Red and Black(DFS)

本文介绍了一道经典的图遍历问题——在一个由红黑瓷砖组成的矩形房间中,从一个指定的黑色瓷砖出发,计算可以到达的所有黑色瓷砖的数量。文章提供了两种解决方案:深度优先搜索(DFS)和广度优先搜索(BFS),并详细展示了每种方法的实现代码。

Link:http://acm.hdu.edu.cn/showproblem.php?pid=1312

Problem:

Red and Black

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9944    Accepted Submission(s): 6190


Problem Description
There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can't move on red tiles, he can move only on black tiles.

Write a program to count the number of black tiles which he can reach by repeating the moves described above. 
 

Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are not more than 20.

There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows.

'.' - a black tile 
'#' - a red tile 
'@' - a man on a black tile(appears exactly once in a data set) 
 

Output
For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself). 
 

Sample Input
  
  
6 9 ....#. .....# ...... ...... ...... ...... ...... #@...# .#..#. 11 9 .#......... .#.#######. .#.#.....#. .#.#.###.#. .#.#..@#.#. .#.#####.#. .#.......#. .#########. ........... 11 6 ..#..#..#.. ..#..#..#.. ..#..#..### ..#..#..#@. ..#..#..#.. ..#..#..#.. 7 7 ..#.#.. ..#.#.. ###.### ...@... ###.### ..#.#.. ..#.#.. 0 0
 

Sample Output
  
  
45 59 6 13
 

Source
 

dfs   code:

#include<stdio.h>
#include<string.h>
char map[21][21];
int vis[21][21];
int d[4][2]={{1,0},{0,1},{-1,0},{0,-1}};
int w,h,cnt,sx,sy;
void dfs(int x,int y)
{
int i,xi,yi;
cnt++;
vis[x][y]=1;
for(i=0;i<4;i++)
{
xi=d[i][0]+x;
yi=d[i][1]+y;
if(xi>=0&&xi<h&&yi>=0&&yi<w&&map[xi][yi]=='.'&&!vis[xi][yi])
{

dfs(xi,yi);
}
}
}
int main()
{
int i,j;
while(scanf("%d%d",&w,&h)!=EOF)
{
if(w==0&&h==0)
break;
for(i=0;i<h;i++)
{
scanf("%s",map[i]);
for(j=0;j<w;j++)
{
if(map[i][j]=='@')
{
sx=i;
sy=j;
}
}
}
cnt=0;
memset(vis,0,sizeof(vis));
dfs(sx,sy);
printf("%d\n",cnt);
}
return 0;
}



------------------------------------------------

bfs  code:



"black and red problem"通常是指图论中的“黑红树”(Black-Red Tree),这是一种用于实现二叉查找树的数据结构。Python中的深度优先搜索(Depth-First Search,DFS)可以用来遍历这种特殊的树。 在处理这类问题的DFS解法中,你需要递归地访问每个节点,并维护两个颜色规则:每个节点要么是红色,要么是黑色,且根节点必须是黑色。两个额外的规则是: 1. 每个叶节点(NIL节点)都是黑色的。 2. 如果一个节点是红色的,则其子节点必须是黑色。 DFS通常会采用一种叫做预置颜色(preorder coloring)的策略,即先访问左子树,然后访问右子树。在遍历时,需要确保每次遇到红色节点时都进行了正确的调整,以保持树的平衡和黑色节点的性质。 下面是一个简单的Python DFS解法示例,假设有一个名为`Node`的类表示树节点,包含`color`(颜色)和`left`, `right`属性: ```python class Node: def __init__(self, color): self.color = color self.left = None self.right = None def is_valid_b_and_r(node): if node is None: return True # 检查当前节点是否违反规则 if node.color != 'red': return is_valid_b_and_r(node.left) and is_valid_b_and_r(node.right) # 深度检查子节点的颜色和位置 left_red = node.left and node.left.color == 'red' right_red = node.right and node.right.color == 'red' # 父亲节点为红色,子节点不能同时为红色 if left_red and right_red: return False # 深入左子树或右子树并检查它们是否有效 if left_red: return is_valid_b_and_r(node.left.left) and is_valid_b_and_r(node.left.right) elif right_red: return is_valid_b_and_r(node.right.left) and is_valid_b_and_r(node.right.right) # 如果到达这里说明所有子节点都不是红色 return True # 示例用法 root = ... # 创建一个代表树的根节点 if is_valid_b_and_r(root): print("树满足black and red规则") else: print("树不满足black and red规则") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林下的码路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值