keras模型保存报错解决

问题:

今天保存keras模型时出现一个warning:

模型:

def model_bulid(self):
    self.model = Sequential()
    self.model.add(
        LSTM(64, input_shape=(self.x_train_st.shape[1], self.x_train_st.shape[2]), activation='relu', name="LSTM"))
    self.model.add(Dense(32, activation='relu', name="layer2"))
    self.model.add(Dense(32, activation='relu', name="layer3"))
    self.model.add(Dense(self.y_shape[1], name="out"))

保存:

def model_save(self, model_name=None) -> None:
    self.model_name = model_name or "预训练模型"
    # self.model.save("PreTrain_model.h5")

    if not os.path.exists(f"{absolute_path}/dat/model/{model_name}/"):
        os.makedirs(f"{absolute_path}/dat/model/{model_name}/")
    # 模型参数保存
    model = self.model
    self.path = f"{absolute_path}/dat/model/{self.model_name}/{self.model_name}.h5"
    model.save(f"{absolute_path}/dat/model/{self.model_name}/{self.model_name}.h5")
    # 其他参数保存

    pkl_path = f"{absolute_path}/dat/model/{self.model_name}/{self.model_name}.pkl"
    f = open(pkl_path, 'wb')
    self.model = None
    pickle.dump(self, f)
    f.close()
    self.model = model

警告:

WARNING:absl:Function _wrapped_model contains input name(s) LSTM_input with unsupported characters which will be renamed to lstm_input in the SavedModel.

解决:

把模型中定义的名字改为小写即可:

def model_bulid(self):
    self.model = Sequential()
    self.model.add(
        LSTM(64, input_shape=(self.x_train_st.shape[1], self.x_train_st.shape[2]), activation='relu', name="LSTM"))
    self.model.add(Dense(32, activation='relu', name="layer2"))
    self.model.add(Dense(32, activation='relu', name="layer3"))
    self.model.add(Dense(self.y_shape[1], name="out"))

改为(name=“LSTM” => name=“lstm” ):

def model_bulid(self):
    self.model = Sequential()
    self.model.add(
        LSTM(64, input_shape=(self.x_train_st.shape[1], self.x_train_st.shape[2]), activation='relu', name="lstm"))
    self.model.add(Dense(32, activation='relu', name="layer2"))
    self.model.add(Dense(32, activation='relu', name="layer3"))
    self.model.add(Dense(self.y_shape[1], name="out"))
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值