纯粹的深搜会RE,宽搜会MLE,正解是动态规划,方程是paths[i][j]= ∑paths[i][k]+ ∑paths[k][j],其中i、k到i、j可行(k<=j),k、j到i、j可行(k<=i),理解为从左上角位置到i行j列的路径数目,等于从左上角到能够到达i、j的位置的位置的路径数总和。另外需要注意的是,输入的数据是字符串形式,而最终结果需要用long long来存储。
Run Time: 0sec
Run Memory: 304KB
Code Length: 944Bytes
Submit Time: 2012-02-11 16:01:28
// Problem#: 1274
// Submission#: 1209332
// The source code is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
// URI: http://creativecommons.org/licenses/by-nc-sa/3.0/
// All Copyright reserved by Informatic Lab of Sun Yat-sen University
#include <cstdio>
#include <cstring>
using namespace std;
int main()
{
int n, board[ 35 ][ 35 ];
long long paths[ 35 ][ 35 ];
int i, j;
char s[ 35 ];
while ( scanf( "%d", &n ) && n != -1 ) {
for ( i = 1; i <= n; i++ ) {
scanf( "%s", s );
for ( j = 1; j <= n; j++ )
board[ i ][ j ] = s[ j - 1 ] - '0';
}
memset( paths, 0, sizeof( paths ) );
paths[ 1 ][ 1 ] = 1;
for ( i = 1; i <= n; i++ ) {
for ( j = 1; j <= n; j++ ) {
if ( board[ i ][ j ] == 0 )
continue;
if ( i + board[ i ][ j ] <= n )
paths[ i + board[ i ][ j ] ][ j ] += paths[ i ][ j ];
if ( j + board[ i ][ j ] <= n )
paths[ i ][ j + board[ i ][ j ] ] += paths[ i ][ j ];
}
}
printf( "%lld\n", paths[ n ][ n ] );
}
return 0;
}
本文介绍了一种使用动态规划算法解决特殊迷宫中从起点到终点路径数量的问题。通过更新二维数组记录可达路径数,避免了深度优先搜索的运行错误和宽度优先搜索的记忆限制错误。
83

被折叠的 条评论
为什么被折叠?



