Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Output
Sample Input
5 17
Sample Output
4
题意:
给你两个整数n和k
通过 n+1或n-1 或n*2 这3种操作,使得n==k
输出最少的操作次数
AC代码如下:
#include "iostream"
#include "cstdio"
#include "cstring"
#include "queue"
using namespace std;
const int maxn=100000*2+100;
bool visit[maxn];
int last[maxn];
int main(int argc, char* argv[])
{
int n,k,v;
cin>>n>>k;
if (n==k)
{
cout<<0<<endl;
return 0;
}
memset(visit,false,sizeof(visit));
queue<int> q;
q.push(n);
while(!q.empty())
{
int u=q.front(); q.pop();
v=u;
if (v==k)
{
vector<int> nodes;
for (;;)
{
nodes.push_back(v);
if (last[v]==n)
{
break;
}
v=last[v];
}
cout<<nodes.size()<<endl; return 0;
}
for (int i=0;i<3;i++)
{
if (i==0)
{
v=u-1;
if (u-1>=0 && !visit[v])
{
q.push(v);
visit[v]=true;
last[v]=u;
}
}
else if(i==1)
{
v=u+1;
if (u<=k && !visit[v])
{
q.push(v);
visit[v]=true;
last[v]=u;
}
}
else if(i==2)
{
v=u*2;
if (u<=k && !visit[v])
{
q.push(v);
visit[v]=true;
last[v]=u;
}
}
if (v==k)
{
vector<int> nodes;
for (;;)
{
nodes.push_back(v);
if (last[v]==n)
{
break;
}
v=last[v];
}
cout<<nodes.size()<<endl;return 0;
}
}
}
return 0;
}