assert AND const

本文详细介绍了C语言中的断言(assert)用法及其在程序中的作用,包括如何预防程序运行时错误的发生。此外,还深入探讨了const关键字的使用技巧,通过实例解释了不同类型const变量的特点及应用场景。

assert:

断言:断定表达式的结果一定为真,如果为真什么都不做,如果为假程序崩溃(debug)

断言的使用必须包含的头文件:#include <assert.h>

 

举例:

1、计算字符串的有效长度,不包含'\0'

#include <stdio.h>
#include <assert.h>
#include <string.h>

int Mystrlen(const char *str)
{
assert(str != NULL);
if(str == NULL)
{
return -1;
}
int i = 0;
while(*str != '\0')//for(i=0;str[i]!='\0';i++)
{
i++;
str++;
}
return i;
}
int main()
{
char str1[10] = "abcd";
printf("%d\n",Mystrlen(str1));
printf("%d\n",Mystrlen(""));
return 0;
}

2、除法

#include <stdio.h>
#include <assert.h>
#include <string.h>
int Div(int a,int b)
{
assert(b != 0);
return a / b;
}

int main()
{
printf("%d\n",Div(10,5));
printf("%d\n",Div(10,3));
printf("%d\n",Div(10,50));

printf("%d\n",Div(10,0));

        return 0;

}const:定义常变量,不能写,只读
a、数据类型对于const而言是透明的 
b、const用于封锁直接修饰的内容,将该内容变为只读

c、权限只能同等传递或者缩小传递

分类:

1、

<1>const 类型 变量;
<2>类型 const 变量:    //<1>、<2>相同

2、

<1>const 类型 * 变量;
<2>类型 const * 变量;

<3>类型 * const 变量;     //<1>、<2>相同,与<3>不同,即分为指针左、指针右两种

 

举例:

int main()
{
int a = 10;                                    // a为普通变量,可进行的操作:读,写
int b = 20;                                    // b为普通变量,可进行的操作:读,写
const int ca = 10;                         //ca为const定义的整型变量,可进行的操作:读
const int cb = 20;                        //cb为const定义的整型变量,可进行的操作:读
int *p = &a;                                 //定义整型指针p,并将a的地址赋值给指针p;
//p = &ca;                                  //该操作将const定义的整型变量ca地址赋值给指针p,因ca只能进行读操作,不能进行写操作,将ca地址赋值给指针p后,指针p即可完成 赋值操作,因此该操作错误
const int *cp1 = &a;                  //重新定义一个由const定义的整型变量cp1;并将a的地址赋值给cp1,因变量a为普通整形变量,可以进行读、写操作,将a的地址赋值给指针cp1后,指针cp1可进行读操作,因此该操作正确
cp1 = &b;                                   //将b的地址赋值给cp1,因变量b为普通整形变量,可以进行读、写操作,将b的地址赋值给指针cp1后,指针cp1可进行读操作,因此该操作正确                                         
cp1 = &ca;                                 //将ca的地址赋值给cp1,因变量ca与cp1为const定义同类型变量,因此可以进行读、写操作,将ca的地址赋值给指针cp1后,指针cp1可进行读操作,因此该操作正确  

const int *cp2 = &ca;                 //重新定义一个由const定义的整型变量cp2;将ca的地址赋值给cp2,因变量ca与cp2为const定义同类型变量,因此可以进行读、写操作,将ca的地址赋值给指针cp2后,指针cp2可进行读操作,因此该操作正确  
int *const cp3 = &a;                   //重新定义一个由const定义的整型变量cp3;并将a的地址赋值给cp3,因变量a为普通整形变量,可以进行读、写操作,将a的地址赋值给指针cp3后,指针cp3可进行读操作,因此该操作正确
//int *const cp4 = &ca;              //重新定义一个由const定义的整型变量cp4;将ca的地址赋值给cp4,因变量ca与cp4为不同类型的const变量,不可进行赋值等操作,因此该操作错误
const int *const cp5 = &a;         //重新定义一个由const定义的整型变量cp5;将a的地址赋值给cp5,因变量a与cp5为const定义同类型变量,因此可以进行读、写操作,将a的地址赋值给指针cp5后,指针cp5可进行读操作,因此该操作正确 
const int *const cp6 = &ca;       //重新定义一个由const定义的整型变量cp6;将ca的地址赋值给cp6,因变量ca与cp6为const定义同类型变量,因此可以进行读、写操作,将ca的地址赋值给指针cp6后,指针cp6可进行读操作,因此该操作正确 

return 0;

}

注意:const直接修饰的变量不可修改,

练习:
int main()
{
int a = 10;
int b;
a = 20;
b = a;
const int ca = 100;              //定义一个const整型变量ca,可进行的操作:读
//ca = 200;                          //给ca进行写操作,操作错误,ca只能进行读操作;
//const int cb;                     //定义一个const整型变量cb,可进行的操作:读,但是未初始化,无可读内容,操作错误
int const cb = 100;             //定义一个const整型变量cb,该操作等价ca

int *p = &a;
p = &b;
*p = 200;
const int *cp1 = &a;
cp1 = &b;
//*cp1 = 200;                                                //const直接修饰*cp1,,*cp1不可修改
int const *cp2 = &a;                                     //定义一个const整型变量cp2,并保存a的地址,该操作等价cp1
cp2 = &b;                                                     //*cp2不可修改
int *const cp3 =  &a;                                   //cp3不可修改,不可保存其他地址,cp3与cp2不为同一类型
*cp3 = 200;                                                  //*cp3可修改

int const *const ccp = &a;                          //cpp和*cpp均不可修改
//ccp = &b;//error                                      //error
//*ccp = 100;//error                                   //error

return 0;
}

C:\Qt\Qt5.3.1\5.3\mingw482_32\include\QtCore\qvector.h:229: error: within this context new (from++) T(); ^#ifndef QVECTOR_H #define QVECTOR_H #include <QtCore/qalgorithms.h> #include <QtCore/qiterator.h> #include <QtCore/qlist.h> #include <QtCore/qrefcount.h> #include <QtCore/qarraydata.h> #include <iterator> #include <vector> #include <stdlib.h> #include <string.h> #ifdef Q_COMPILER_INITIALIZER_LISTS #include <initializer_list> #endif #include <algorithm> QT_BEGIN_NAMESPACE class QRegion; template <typename T> class QVector { typedef QTypedArrayData<T> Data; Data *d; public: inline QVector() : d(Data::sharedNull()) { } explicit QVector(int size); QVector(int size, const T &t); inline QVector(const QVector<T> &v); inline ~QVector() { if (!d->ref.deref()) freeData(d); } QVector<T> &operator=(const QVector<T> &v); #ifdef Q_COMPILER_RVALUE_REFS inline QVector(QVector<T> &&other) : d(other.d) { other.d = Data::sharedNull(); } inline QVector<T> operator=(QVector<T> &&other) { qSwap(d, other.d); return *this; } #endif inline void swap(QVector<T> &other) { qSwap(d, other.d); } #ifdef Q_COMPILER_INITIALIZER_LISTS inline QVector(std::initializer_list<T> args); #endif bool operator==(const QVector<T> &v) const; inline bool operator!=(const QVector<T> &v) const { return !(*this == v); } inline int size() const { return d->size; } inline bool isEmpty() const { return d->size == 0; } void resize(int size); inline int capacity() const { return int(d->alloc); } void reserve(int size); inline void squeeze() { reallocData(d->size, d->size); if (d->capacityReserved) { // capacity reserved in a read only memory would be useless // this checks avoid writing to such memory. d->capacityReserved = 0; } } inline void detach(); inline bool isDetached() const { return !d->ref.isShared(); } #if QT_SUPPORTS(UNSHARABLE_CONTAINERS) inline void setSharable(bool sharable) { if (sharable == d->ref.isSharable()) return; if (!sharable) detach(); if (d == Data::unsharableEmpty()) { if (sharable) d = Data::sharedNull(); } else { d->ref.setSharable(sharable); } Q_ASSERT(d->ref.isSharable() == sharable); } #endif inline bool isSharedWith(const QVector<T> &other) const { return d == other.d; } inline T *data() { detach(); return d->begin(); } inline const T *data() const { return d->begin(); } inline const T *constData() const { return d->begin(); } void clear(); const T &at(int i) const; T &operator[](int i); const T &operator[](int i) const; void append(const T &t); void prepend(const T &t); void insert(int i, const T &t); void insert(int i, int n, const T &t); void replace(int i, const T &t); void remove(int i); void remove(int i, int n); inline void removeFirst() { Q_ASSERT(!isEmpty()); erase(d->begin()); } inline void removeLast(); inline T takeFirst() { Q_ASSERT(!isEmpty()); T r = first(); removeFirst(); return r; } inline T takeLast() { Q_ASSERT(!isEmpty()); T r = last(); removeLast(); return r; } QVector<T> &fill(const T &t, int size = -1); int indexOf(const T &t, int from = 0) const; int lastIndexOf(const T &t, int from = -1) const; bool contains(const T &t) const; int count(const T &t) const; // QList compatibility void removeAt(int i) { remove(i); } int length() const { return size(); } T takeAt(int i) { T t = at(i); remove(i); return t; } // STL-style typedef typename Data::iterator iterator; typedef typename Data::const_iterator const_iterator; #if !defined(QT_STRICT_ITERATORS) || defined(Q_QDOC) inline iterator begin() { detach(); return d->begin(); } inline const_iterator begin() const { return d->constBegin(); } inline const_iterator cbegin() const { return d->constBegin(); } inline const_iterator constBegin() const { return d->constBegin(); } inline iterator end() { detach(); return d->end(); } inline const_iterator end() const { return d->constEnd(); } inline const_iterator cend() const { return d->constEnd(); } inline const_iterator constEnd() const { return d->constEnd(); } #else inline iterator begin(iterator = iterator()) { detach(); return d->begin(); } inline const_iterator begin(const_iterator = const_iterator()) const { return d->constBegin(); } inline const_iterator cbegin(const_iterator = const_iterator()) const { return d->constBegin(); } inline const_iterator constBegin(const_iterator = const_iterator()) const { return d->constBegin(); } inline iterator end(iterator = iterator()) { detach(); return d->end(); } inline const_iterator end(const_iterator = const_iterator()) const { return d->constEnd(); } inline const_iterator cend(const_iterator = const_iterator()) const { return d->constEnd(); } inline const_iterator constEnd(const_iterator = const_iterator()) const { return d->constEnd(); } #endif iterator insert(iterator before, int n, const T &x); inline iterator insert(iterator before, const T &x) { return insert(before, 1, x); } iterator erase(iterator begin, iterator end); inline iterator erase(iterator pos) { return erase(pos, pos+1); } // more Qt inline int count() const { return d->size; } inline T& first() { Q_ASSERT(!isEmpty()); return *begin(); } inline const T &first() const { Q_ASSERT(!isEmpty()); return *begin(); } inline T& last() { Q_ASSERT(!isEmpty()); return *(end()-1); } inline const T &last() const { Q_ASSERT(!isEmpty()); return *(end()-1); } inline bool startsWith(const T &t) const { return !isEmpty() && first() == t; } inline bool endsWith(const T &t) const { return !isEmpty() && last() == t; } QVector<T> mid(int pos, int len = -1) const; T value(int i) const; T value(int i, const T &defaultValue) const; // STL compatibility typedef T value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef qptrdiff difference_type; typedef iterator Iterator; typedef const_iterator ConstIterator; typedef int size_type; inline void push_back(const T &t) { append(t); } inline void push_front(const T &t) { prepend(t); } void pop_back() { removeLast(); } void pop_front() { removeFirst(); } inline bool empty() const { return d->size == 0; } inline T& front() { return first(); } inline const_reference front() const { return first(); } inline reference back() { return last(); } inline const_reference back() const { return last(); } // comfort QVector<T> &operator+=(const QVector<T> &l); inline QVector<T> operator+(const QVector<T> &l) const { QVector n = *this; n += l; return n; } inline QVector<T> &operator+=(const T &t) { append(t); return *this; } inline QVector<T> &operator<< (const T &t) { append(t); return *this; } inline QVector<T> &operator<<(const QVector<T> &l) { *this += l; return *this; } QList<T> toList() const; static QVector<T> fromList(const QList<T> &list); static inline QVector<T> fromStdVector(const std::vector<T> &vector) { QVector<T> tmp; tmp.reserve(int(vector.size())); std::copy(vector.begin(), vector.end(), std::back_inserter(tmp)); return tmp; } inline std::vector<T> toStdVector() const { std::vector<T> tmp; tmp.reserve(size()); std::copy(constBegin(), constEnd(), std::back_inserter(tmp)); return tmp; } private: friend class QRegion; // Optimization for QRegion::rects() void reallocData(const int size, const int alloc, QArrayData::AllocationOptions options = QArrayData::Default); void reallocData(const int sz) { reallocData(sz, d->alloc); } void freeData(Data *d); void defaultConstruct(T *from, T *to); void copyConstruct(const T *srcFrom, const T *srcTo, T *dstFrom); void destruct(T *from, T *to); bool isValidIterator(const iterator &i) const { return (i <= d->end()) && (d->begin() <= i); } class AlignmentDummy { Data header; T array[1]; }; }; #ifdef Q_CC_MSVC // behavior change: an object of POD type constructed with an initializer of the form () // will be default-initialized # pragma warning ( push ) # pragma warning ( disable : 4345 ) #endif template <typename T> void QVector<T>::defaultConstruct(T *from, T *to) { if (QTypeInfo<T>::isComplex) { while (from != to) { new (from++) T(); } } else { ::memset(static_cast<void *>(from), 0, (to - from) * sizeof(T)); } } #ifdef Q_CC_MSVC # pragma warning ( pop ) #endif template <typename T> void QVector<T>::copyConstruct(const T *srcFrom, const T *srcTo, T *dstFrom) { if (QTypeInfo<T>::isComplex) { while (srcFrom != srcTo) new (dstFrom++) T(*srcFrom++); } else { ::memcpy(static_cast<void *>(dstFrom), static_cast<const void *>(srcFrom), (srcTo - srcFrom) * sizeof(T)); } } #if defined(Q_CC_MSVC) #pragma warning( push ) #pragma warning( disable : 4127 ) // conditional expression is constant #endif template <typename T> void QVector<T>::destruct(T *from, T *to) { if (QTypeInfo<T>::isComplex) { while (from != to) { from++->~T(); } } } #if defined(Q_CC_MSVC) #pragma warning( pop ) #endif template <typename T> inline QVector<T>::QVector(const QVector<T> &v) { if (v.d->ref.ref()) { d = v.d; } else { if (v.d->capacityReserved) { d = Data::allocate(v.d->alloc); d->capacityReserved = true; } else { d = Data::allocate(v.d->size); } if (d->alloc) { copyConstruct(v.d->begin(), v.d->end(), d->begin()); d->size = v.d->size; } } } template <typename T> void QVector<T>::detach() { if (!isDetached()) { #if QT_SUPPORTS(UNSHARABLE_CONTAINERS) if (!d->alloc) d = Data::unsharableEmpty(); else #endif reallocData(d->size, int(d->alloc)); } Q_ASSERT(isDetached()); } template <typename T> void QVector<T>::reserve(int asize) { if (asize > int(d->alloc)) reallocData(d->size, asize); if (isDetached()) d->capacityReserved = 1; Q_ASSERT(capacity() >= asize); } template <typename T> void QVector<T>::resize(int asize) { int newAlloc; const int oldAlloc = int(d->alloc); QArrayData::AllocationOptions opt; if (asize > oldAlloc) { // there is not enough space newAlloc = asize; opt = QArrayData::Grow; } else if (!d->capacityReserved && asize < d->size && asize < (oldAlloc >> 1)) { // we want to shrink newAlloc = asize; opt = QArrayData::Grow; } else { newAlloc = oldAlloc; } reallocData(asize, newAlloc, opt); } template <typename T> inline void QVector<T>::clear() { *this = QVector<T>(); } template <typename T> inline const T &QVector<T>::at(int i) const { Q_ASSERT_X(i >= 0 && i < d->size, "QVector<T>::at", "index out of range"); return d->begin()[i]; } template <typename T> inline const T &QVector<T>::operator[](int i) const { Q_ASSERT_X(i >= 0 && i < d->size, "QVector<T>::operator[]", "index out of range"); return d->begin()[i]; } template <typename T> inline T &QVector<T>::operator[](int i) { Q_ASSERT_X(i >= 0 && i < d->size, "QVector<T>::operator[]", "index out of range"); return data()[i]; } template <typename T> inline void QVector<T>::insert(int i, const T &t) { Q_ASSERT_X(i >= 0 && i <= d->size, "QVector<T>::insert", "index out of range"); insert(begin() + i, 1, t); } template <typename T> inline void QVector<T>::insert(int i, int n, const T &t) { Q_ASSERT_X(i >= 0 && i <= d->size, "QVector<T>::insert", "index out of range"); insert(begin() + i, n, t); } template <typename T> inline void QVector<T>::remove(int i, int n) { Q_ASSERT_X(i >= 0 && n >= 0 && i + n <= d->size, "QVector<T>::remove", "index out of range"); erase(d->begin() + i, d->begin() + i + n); } template <typename T> inline void QVector<T>::remove(int i) { Q_ASSERT_X(i >= 0 && i < d->size, "QVector<T>::remove", "index out of range"); erase(d->begin() + i, d->begin() + i + 1); } template <typename T> inline void QVector<T>::prepend(const T &t) { insert(begin(), 1, t); } template <typename T> inline void QVector<T>::replace(int i, const T &t) { Q_ASSERT_X(i >= 0 && i < d->size, "QVector<T>::replace", "index out of range"); const T copy(t); data()[i] = copy; } template <typename T> QVector<T> &QVector<T>::operator=(const QVector<T> &v) { if (v.d != d) { QVector<T> tmp(v); tmp.swap(*this); } return *this; } template <typename T> QVector<T>::QVector(int asize) { Q_ASSERT_X(asize >= 0, "QVector::QVector", "Size must be greater than or equal to 0."); if (Q_LIKELY(asize > 0)) { d = Data::allocate(asize); d->size = asize; defaultConstruct(d->begin(), d->end()); } else { d = Data::sharedNull(); } } template <typename T> QVector<T>::QVector(int asize, const T &t) { Q_ASSERT_X(asize >= 0, "QVector::QVector", "Size must be greater than or equal to 0."); if (asize > 0) { d = Data::allocate(asize); d->size = asize; T* i = d->end(); while (i != d->begin()) new (--i) T(t); } else { d = Data::sharedNull(); } } #ifdef Q_COMPILER_INITIALIZER_LISTS template <typename T> QVector<T>::QVector(std::initializer_list<T> args) { if (args.size() > 0) { d = Data::allocate(args.size()); // std::initializer_list<T>::iterator is guaranteed to be // const T* ([support.initlist]/1), so can be memcpy'ed away from by copyConstruct copyConstruct(args.begin(), args.end(), d->begin()); d->size = int(args.size()); } else { d = Data::sharedNull(); } } #endif template <typename T> void QVector<T>::freeData(Data *x) { destruct(x->begin(), x->end()); Data::deallocate(x); } template <typename T> void QVector<T>::reallocData(const int asize, const int aalloc, QArrayData::AllocationOptions options) { Q_ASSERT(asize >= 0 && asize <= aalloc); Data *x = d; const bool isShared = d->ref.isShared(); if (aalloc != 0) { if (aalloc != int(d->alloc) || isShared) { QT_TRY { // allocate memory x = Data::allocate(aalloc, options); Q_CHECK_PTR(x); // aalloc is bigger then 0 so it is not [un]sharedEmpty #if QT_SUPPORTS(UNSHARABLE_CONTAINERS) Q_ASSERT(x->ref.isSharable() || options.testFlag(QArrayData::Unsharable)); #endif Q_ASSERT(!x->ref.isStatic()); x->size = asize; T *srcBegin = d->begin(); T *srcEnd = asize > d->size ? d->end() : d->begin() + asize; T *dst = x->begin(); if (QTypeInfo<T>::isStatic || (isShared && QTypeInfo<T>::isComplex)) { // we can not move the data, we need to copy construct it while (srcBegin != srcEnd) { new (dst++) T(*srcBegin++); } } else { ::memcpy(static_cast<void *>(dst), static_cast<void *>(srcBegin), (srcEnd - srcBegin) * sizeof(T)); dst += srcEnd - srcBegin; // destruct unused / not moved data if (asize < d->size) destruct(d->begin() + asize, d->end()); } if (asize > d->size) { // construct all new objects when growing QT_TRY { defaultConstruct(dst, x->end()); } QT_CATCH (...) { // destruct already copied objects destruct(x->begin(), dst); QT_RETHROW; } } } QT_CATCH (...) { Data::deallocate(x); QT_RETHROW; } x->capacityReserved = d->capacityReserved; } else { Q_ASSERT(int(d->alloc) == aalloc); // resize, without changing allocation size Q_ASSERT(isDetached()); // can be done only on detached d Q_ASSERT(x == d); // in this case we do not need to allocate anything if (asize <= d->size) { destruct(x->begin() + asize, x->end()); // from future end to current end } else { defaultConstruct(x->end(), x->begin() + asize); // from current end to future end } x->size = asize; } } else { x = Data::sharedNull(); } if (d != x) { if (!d->ref.deref()) { if (QTypeInfo<T>::isStatic || !aalloc || (isShared && QTypeInfo<T>::isComplex)) { // data was copy constructed, we need to call destructors // or if !alloc we did nothing to the old 'd'. freeData(d); } else { Data::deallocate(d); } } d = x; } Q_ASSERT(d->data()); Q_ASSERT(uint(d->size) <= d->alloc); #if QT_SUPPORTS(UNSHARABLE_CONTAINERS) Q_ASSERT(d != Data::unsharableEmpty()); #endif Q_ASSERT(aalloc ? d != Data::sharedNull() : d == Data::sharedNull()); Q_ASSERT(d->alloc >= uint(aalloc)); Q_ASSERT(d->size == asize); } template<typename T> Q_OUTOFLINE_TEMPLATE T QVector<T>::value(int i) const { if (uint(i) >= uint(d->size)) { return T(); } return d->begin()[i]; } template<typename T> Q_OUTOFLINE_TEMPLATE T QVector<T>::value(int i, const T &defaultValue) const { return uint(i) >= uint(d->size) ? defaultValue : d->begin()[i]; } template <typename T> void QVector<T>::append(const T &t) { const T copy(t); const bool isTooSmall = uint(d->size + 1) > d->alloc; if (!isDetached() || isTooSmall) { QArrayData::AllocationOptions opt(isTooSmall ? QArrayData::Grow : QArrayData::Default); reallocData(d->size, isTooSmall ? d->size + 1 : d->alloc, opt); } if (QTypeInfo<T>::isComplex) new (d->end()) T(copy); else *d->end() = copy; ++d->size; } template <typename T> void QVector<T>::removeLast() { Q_ASSERT(!isEmpty()); Q_ASSERT(d->alloc); if (!d->ref.isShared()) { --d->size; if (QTypeInfo<T>::isComplex) (d->data() + d->size)->~T(); } else { reallocData(d->size - 1); } } template <typename T> typename QVector<T>::iterator QVector<T>::insert(iterator before, size_type n, const T &t) { Q_ASSERT_X(isValidIterator(before), "QVector::insert", "The specified iterator argument 'before' is invalid"); int offset = std::distance(d->begin(), before); if (n != 0) { const T copy(t); if (!isDetached() || d->size + n > int(d->alloc)) reallocData(d->size, d->size + n, QArrayData::Grow); if (QTypeInfo<T>::isStatic) { T *b = d->end(); T *i = d->end() + n; while (i != b) new (--i) T; i = d->end(); T *j = i + n; b = d->begin() + offset; while (i != b) *--j = *--i; i = b+n; while (i != b) *--i = copy; } else { T *b = d->begin() + offset; T *i = b + n; memmove(i, b, (d->size - offset) * sizeof(T)); while (i != b) new (--i) T(copy); } d->size += n; } return d->begin() + offset; } template <typename T> typename QVector<T>::iterator QVector<T>::erase(iterator abegin, iterator aend) { Q_ASSERT_X(isValidIterator(abegin), "QVector::erase", "The specified iterator argument 'abegin' is invalid"); Q_ASSERT_X(isValidIterator(aend), "QVector::erase", "The specified iterator argument 'aend' is invalid"); const int itemsToErase = aend - abegin; if (!itemsToErase) return abegin; Q_ASSERT(abegin >= d->begin()); Q_ASSERT(aend <= d->end()); Q_ASSERT(abegin <= aend); const int itemsUntouched = abegin - d->begin(); // FIXME we could do a proper realloc, which copy constructs only needed data. // FIXME we ara about to delete data maybe it is good time to shrink? // FIXME the shrink is also an issue in removeLast, that is just a copy + reduce of this. if (d->alloc) { detach(); abegin = d->begin() + itemsUntouched; aend = abegin + itemsToErase; if (QTypeInfo<T>::isStatic) { iterator moveBegin = abegin + itemsToErase; iterator moveEnd = d->end(); while (moveBegin != moveEnd) { if (QTypeInfo<T>::isComplex) static_cast<T *>(abegin)->~T(); new (abegin++) T(*moveBegin++); } if (abegin < d->end()) { // destroy rest of instances destruct(abegin, d->end()); } } else { destruct(abegin, aend); memmove(abegin, aend, (d->size - itemsToErase - itemsUntouched) * sizeof(T)); } d->size -= itemsToErase; } return d->begin() + itemsUntouched; } template <typename T> bool QVector<T>::operator==(const QVector<T> &v) const { if (d->size != v.d->size) return false; if (d == v.d) return true; T* b = d->begin(); T* i = b + d->size; T* j = v.d->end(); while (i != b) if (!(*--i == *--j)) return false; return true; } template <typename T> QVector<T> &QVector<T>::fill(const T &from, int asize) { const T copy(from); resize(asize < 0 ? d->size : asize); if (d->size) { T *i = d->end(); T *b = d->begin(); while (i != b) *--i = copy; } return *this; } template <typename T> QVector<T> &QVector<T>::operator+=(const QVector &l) { uint newSize = d->size + l.d->size; const bool isTooSmall = newSize > d->alloc; if (!isDetached() || isTooSmall) { QArrayData::AllocationOptions opt(isTooSmall ? QArrayData::Grow : QArrayData::Default); reallocData(d->size, isTooSmall ? newSize : d->alloc, opt); } if (d->alloc) { T *w = d->begin() + newSize; T *i = l.d->end(); T *b = l.d->begin(); while (i != b) { if (QTypeInfo<T>::isComplex) new (--w) T(*--i); else *--w = *--i; } d->size = newSize; } return *this; } template <typename T> int QVector<T>::indexOf(const T &t, int from) const { if (from < 0) from = qMax(from + d->size, 0); if (from < d->size) { T* n = d->begin() + from - 1; T* e = d->end(); while (++n != e) if (*n == t) return n - d->begin(); } return -1; } template <typename T> int QVector<T>::lastIndexOf(const T &t, int from) const { if (from < 0) from += d->size; else if (from >= d->size) from = d->size-1; if (from >= 0) { T* b = d->begin(); T* n = d->begin() + from + 1; while (n != b) { if (*--n == t) return n - b; } } return -1; } template <typename T> bool QVector<T>::contains(const T &t) const { T* b = d->begin(); T* i = d->end(); while (i != b) if (*--i == t) return true; return false; } template <typename T> int QVector<T>::count(const T &t) const { int c = 0; T* b = d->begin(); T* i = d->end(); while (i != b) if (*--i == t) ++c; return c; } template <typename T> Q_OUTOFLINE_TEMPLATE QVector<T> QVector<T>::mid(int pos, int len) const { if (len < 0) len = size() - pos; if (pos == 0 && len == size()) return *this; if (pos + len > size()) len = size() - pos; QVector<T> copy; copy.reserve(len); for (int i = pos; i < pos + len; ++i) copy += at(i); return copy; } template <typename T> Q_OUTOFLINE_TEMPLATE QList<T> QVector<T>::toList() const { QList<T> result; result.reserve(size()); for (int i = 0; i < size(); ++i) result.append(at(i)); return result; } template <typename T> Q_OUTOFLINE_TEMPLATE QVector<T> QList<T>::toVector() const { QVector<T> result(size()); for (int i = 0; i < size(); ++i) result[i] = at(i); return result; } template <typename T> QVector<T> QVector<T>::fromList(const QList<T> &list) { return list.toVector(); } template <typename T> QList<T> QList<T>::fromVector(const QVector<T> &vector) { return vector.toList(); } Q_DECLARE_SEQUENTIAL_ITERATOR(Vector) Q_DECLARE_MUTABLE_SEQUENTIAL_ITERATOR(Vector) /* ### Qt 5: ### This needs to be removed for next releases of Qt. It is a workaround for vc++ because ### Qt exports QPolygon and QPolygonF that inherit QVector<QPoint> and ### QVector<QPointF> respectively. */ #ifdef Q_CC_MSVC QT_BEGIN_INCLUDE_NAMESPACE #include <QtCore/qpoint.h> QT_END_INCLUDE_NAMESPACE #if defined(QT_BUILD_CORE_LIB) #define Q_TEMPLATE_EXTERN #else #define Q_TEMPLATE_EXTERN extern #endif Q_TEMPLATE_EXTERN template class Q_CORE_EXPORT QVector<QPointF>; Q_TEMPLATE_EXTERN template class Q_CORE_EXPORT QVector<QPoint>; #endif QT_END_NAMESPACE #endif // QVECTOR_H用QT creator 5.3.1写修改此问题
06-11
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值