UVA 11178 - Morley's Theorem 求坐标

探讨Morley定理的应用,即任意三角形内角三等分线相交构成等边三角形。介绍如何通过输入三角形顶点坐标计算出等边三角形顶点坐标的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击打开链接

 

Problem D
Morley’s Theorem
Input:
Standard Input

Output: Standard Output

 Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral triangle DEF.

 

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian coordinates of D, E and F given the coordinates of A, B, and C.

 

Input

First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers. This six integers actually indicates that the Cartesian coordinates of point A, B and C are respectively. You can assume that the area of triangle ABC is not equal to zero, and the points A, B and C are in counter clockwise order.

 
Output
For each line of input you should produce one line of output. This line contains six floating point numbers separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are respectively. Errors less than  will be accepted.

 

Sample Input   Output for Sample Input

 

2
1 1 2 2 1 2
0 0 100 0 50 50

1.316987 1.816987 1.183013  1.683013 1.366025 1.633975

56.698730 25.000000  43.301270 25.000000 50.000000 13.397460

 

 


Problemsetters: Shahriar Manzoor

Special Thanks: Joachim Wulff

 

 

题意是说作三角形ABC每个内角的三等分线,相交成三角形DEF,则DEF是等边三角形。求出DEF三点坐标。

如果要求D点,则要计算∠ABC的值a,然后把射线BC逆时针旋转a/3,得到直线BD。同理得到直线CD,求交点即可。

 

#include<stdio.h>
#include<math.h>
using namespace std;
struct Point
{
    double x,y;
    Point(double x=0,double y=0):x(x),y(y){}//构造函数
};
typedef Point Vector;
Point operator-(Point A,Point B)
{
    return Point(A.x-B.x,A.y-B.y);
}

Point operator+(Point A,Point B)
{
    return Point(A.x+B.x,A.y+B.y);
}

Point operator*(Point A,double p)
{
    return Point(A.x*p,A.y*p);
}


double Dot(Point A,Point B)
{
    return A.x*B.x+A.y*B.y;
}

double Lenth(Point A)
{
    return sqrt(Dot(A,A));
}

double Angle(Point A,Point B)
{
    return acos(Dot(A,B)/Lenth(A)/Lenth(B));
}


Point Rotate(Point A,double rad)//rad是弧度
{
    return Point(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}

double Cross(Point A,Point B)
{
    return A.x*B.y-A.y*B.x;
}

//求相交点的坐标
Point  GetLineIntersection(Point P,Point V,Point Q,Point W)
{
    Point u=P-Q;
    double t=Cross(W,u)/Cross(V,W);
    return P+V*t;
}


Point getD(Point A,Point B,Point C)
{
    Vector v1=C-B;
    double a1=Angle(A-B,v1);
    v1=Rotate(v1,a1/3);

    Vector v2=B-C;
    double a2=Angle(A-C,v2);
    v2=Rotate(v2,-a2/3);//负数表示逆时针旋转
    return GetLineIntersection(B,v1,C,v2);
}
int main()
{
    int t;
    Point A,B,C,D,E,F;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lf%lf",&A.x,&A.y);
        scanf("%lf%lf",&B.x,&B.y);
        scanf("%lf%lf",&C.x,&C.y);
        D=getD(A,B,C);
        E=getD(B,C,A);
        F=getD(C,A,B);
        printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
    }
    return 0;

}


 

资源下载接为: https://pan.quark.cn/s/22ca96b7bd39 在当今的软件开发领域,自动化构建与发布是提升开发效率和项目质量的关键环节。Jenkins Pipeline作为一种强大的自动化工具,能够有效助力Java项目的快速构建、测试及部署。本文将详细介绍如何利用Jenkins Pipeline实现Java项目的自动化构建与发布。 Jenkins Pipeline简介 Jenkins Pipeline是运行在Jenkins上的一套工作流框架,它将原本分散在单个或多个节点上独立运行的任务串联起来,实现复杂流程的编排与可视化。它是Jenkins 2.X的核心特性之一,推动了Jenkins从持续集成(CI)向持续交付(CD)及DevOps的转变。 创建Pipeline项目 要使用Jenkins Pipeline自动化构建发布Java项目,首先需要创建Pipeline项目。具体步骤如下: 登录Jenkins,点击“新建项”,选择“Pipeline”。 输入项目名称和描述,点击“确定”。 在Pipeline脚本中定义项目字典、发版脚本和预发布脚本。 编写Pipeline脚本 Pipeline脚本是Jenkins Pipeline的核心,用于定义自动化构建和发布的流程。以下是一个简单的Pipeline脚本示例: 在上述脚本中,定义了四个阶段:Checkout、Build、Push package和Deploy/Rollback。每个阶段都可以根据实际需进行配置和调整。 通过Jenkins Pipeline自动化构建发布Java项目,可以显著提升开发效率和项目质量。借助Pipeline,我们能够轻松实现自动化构建、测试和部署,从而提高项目的整体质量和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值