UVA 11178 - Morley's Theorem 求坐标

探讨Morley定理的应用,即任意三角形内角三等分线相交构成等边三角形。介绍如何通过输入三角形顶点坐标计算出等边三角形顶点坐标的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击打开链接

 

Problem D
Morley’s Theorem
Input:
Standard Input

Output: Standard Output

 Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral triangle DEF.

 

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian coordinates of D, E and F given the coordinates of A, B, and C.

 

Input

First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers. This six integers actually indicates that the Cartesian coordinates of point A, B and C are respectively. You can assume that the area of triangle ABC is not equal to zero, and the points A, B and C are in counter clockwise order.

 
Output
For each line of input you should produce one line of output. This line contains six floating point numbers separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are respectively. Errors less than  will be accepted.

 

Sample Input   Output for Sample Input

 

2
1 1 2 2 1 2
0 0 100 0 50 50

1.316987 1.816987 1.183013  1.683013 1.366025 1.633975

56.698730 25.000000  43.301270 25.000000 50.000000 13.397460

 

 


Problemsetters: Shahriar Manzoor

Special Thanks: Joachim Wulff

 

 

题意是说作三角形ABC每个内角的三等分线,相交成三角形DEF,则DEF是等边三角形。求出DEF三点坐标。

如果要求D点,则要计算∠ABC的值a,然后把射线BC逆时针旋转a/3,得到直线BD。同理得到直线CD,求交点即可。

 

#include<stdio.h>
#include<math.h>
using namespace std;
struct Point
{
    double x,y;
    Point(double x=0,double y=0):x(x),y(y){}//构造函数
};
typedef Point Vector;
Point operator-(Point A,Point B)
{
    return Point(A.x-B.x,A.y-B.y);
}

Point operator+(Point A,Point B)
{
    return Point(A.x+B.x,A.y+B.y);
}

Point operator*(Point A,double p)
{
    return Point(A.x*p,A.y*p);
}


double Dot(Point A,Point B)
{
    return A.x*B.x+A.y*B.y;
}

double Lenth(Point A)
{
    return sqrt(Dot(A,A));
}

double Angle(Point A,Point B)
{
    return acos(Dot(A,B)/Lenth(A)/Lenth(B));
}


Point Rotate(Point A,double rad)//rad是弧度
{
    return Point(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}

double Cross(Point A,Point B)
{
    return A.x*B.y-A.y*B.x;
}

//求相交点的坐标
Point  GetLineIntersection(Point P,Point V,Point Q,Point W)
{
    Point u=P-Q;
    double t=Cross(W,u)/Cross(V,W);
    return P+V*t;
}


Point getD(Point A,Point B,Point C)
{
    Vector v1=C-B;
    double a1=Angle(A-B,v1);
    v1=Rotate(v1,a1/3);

    Vector v2=B-C;
    double a2=Angle(A-C,v2);
    v2=Rotate(v2,-a2/3);//负数表示逆时针旋转
    return GetLineIntersection(B,v1,C,v2);
}
int main()
{
    int t;
    Point A,B,C,D,E,F;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lf%lf",&A.x,&A.y);
        scanf("%lf%lf",&B.x,&B.y);
        scanf("%lf%lf",&C.x,&C.y);
        D=getD(A,B,C);
        E=getD(B,C,A);
        F=getD(C,A,B);
        printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
    }
    return 0;

}


 

资源下载接为: https://pan.quark.cn/s/9648a1f24758 这个HTML文件是一个专门设计的网页,适合在告白或纪念日这样的特殊时刻送给女朋友,给她带来惊喜。它通过HTML技术,将普通文字转化为富有情感和创意的表达方式,让数字媒体也能传递深情。HTML(HyperText Markup Language)是构建网页的基础语言,通过标签描述网页结构和内容,让浏览器正确展示页面。在这个特效网页中,开发者可能使用了HTML5的新特性,比如音频、视频、Canvas画布或WebGL图形,来提升视觉效果和交互体验。 原本这个文件可能是基于ASP.NET技术构建的,其扩展名是“.aspx”。ASP.NET是微软开发的一个服务器端Web应用程序框架,支持多种编程语言(如C#或VB.NET)来编写动态网页。但为了在本地直接运行,不依赖服务器,开发者将其转换为纯静态的HTML格式,只需浏览器即可打开查看。 在使用这个HTML特效页时,建议使用Internet Explorer(IE)浏览器,因为一些老的或特定的网页特效可能只在IE上表现正常,尤其是那些依赖ActiveX控件或IE特有功能的页面。不过,由于IE逐渐被淘汰,现代网页可能不再对其进行优化,因此在其他现代浏览器上运行可能会出现问题。 压缩包内的文件“yangyisen0713-7561403-biaobai(html版本)_1598430618”是经过压缩的HTML文件,可能包含图片、CSS样式表和JavaScript脚本等资源。用户需要先解压,然后在浏览器中打开HTML文件,就能看到预设的告白或纪念日特效。 这个项目展示了HTML作为动态和互动内容载体的强大能力,也提醒我们,尽管技术在进步,但有时复古的方式(如使用IE浏览器)仍能唤起怀旧之情。在准备类似的个性化礼物时,掌握基本的HTML和网页制作技巧非常
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值