题意:找重心和最大子树的节点数。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <vector>
#include <iostream>
using namespace std;
int N; // 1<= N <= 20000
const int maxn = 20000;
vector<int> tree[maxn + 5]; // tree[i]表示节点i的相邻节点
int d[maxn + 5]; // d[i]表示以i为根的子树的节点个数
#define INF 10000000
int minNode;
int minBalance;
void dfs(int node, int parent) // node and its parent
{
d[node] = 1; // d数组记录的是它所有的子节点数目
int maxSubTree = 0; // subtree that has the most number of nodes
for (int i = 0; i < tree[node].size(); i++)
{
int son = tree[node][i];
if (son != parent)
{
dfs(son, node);
d[node] += d[son];
maxSubTree = max(maxSubTree, d[son]);//这里就比较神奇了,这一步和循环外的处理可以直接把记录分支中最大的子节点数的数组省略了
}
}
maxSubTree = max(maxSubTree, N - d[node]); // "upside substree with (N - d[node]) nodes"
if (maxSubTree < minBalance)
{
minBalance = maxSubTree;
minNode = node;
}
}
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
scanf("%d", &N);
for (int i = 1; i <= N - 1; i++)
{
tree[i].clear();
}
for (int i = 1; i <= N-1; i++)
{
int u, v;
scanf("%d%d", &u, &v);
tree[u].push_back(v);
tree[v].push_back(u);
}
minNode = 0;
minBalance = INF;
dfs(1, 0); // fist node as root
printf("%d %d\n", minNode, minBalance);
}
return 0;
}