import os
import cv2
import xlwt
import xlrd
import numpy as np
from skimage import feature as skif
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, mean_absolute_error, f1_score, mutual_info_score
from sklearn.metrics.pairwise import pairwise_kernels, pairwise_distances
from sklearn.base import ClassifierMixin, BaseEstimator
from sklearn.utils.validation import check_X_y
from sklearn import preprocessing
def getLbpData(image, hist_size=256, lbp_radius=1, lbp_point=8):
image = cv2.resize(image, (300, 300), interpolation=cv2.INTER_CUBIC)
# 使用LBP方法提取图像的纹理特征.
lbp = skif.local_binary_pattern(image, lbp_point, lbp_radius, 'default')
# 统计图像的直方图
max_bins = int(lbp.max() + 1)
# hist size:256
hist, _ = np.histogram(lbp, normed=True, bins=max_bins, range=(0, max_bins))
return hist
data = []
label = []
IMAGES_DIR = os.path.join(os.path.dirname(__file__), r'D:\FG-NET\ImagesClear')
book = xlrd.open_workbook(r"D:\FG-NET\meta.xls")
table = book.sheet_by_index(0)
for name in table.col_values(0):
print(name)
image = cv2.imread(os.path.join(IMAGES_DIR, name),0)
# print(image)
lbpdata = getLbpData(image)
data.append(lbpdata)
for lab in table.col_values(2):
label.append(lab)
data = np.array(data)
print(data.shape)
label = np.array(label)
print(label.shape)
train_X,test_X,train_y,test_y = train_test_split(data,label,test_size=0.5)
model = SVC(kernel='rbf',C=0.01)
model.fit(train_X,train_y)
y_hat = model.predict(test_X)
ACC = accuracy_score(y_hat, test_y)
MAE = mean_absolute_error(y_hat, test_y)
MI = mutual_info_score(y_hat, test_y)
print("ACC===",ACC)
print("MAE===",MAE)
print("MI===",MI)
使用LBP特征提取对FG-NET数据集进行年龄估计
最新推荐文章于 2024-01-18 18:33:03 发布