import torch
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# data = np.array(pd.read_csv(r"D:\RegressionData\sin.csv"))
# x = data[:,0]
# y = data[:,-1]
# print(x.shape)
# print(y.shape)
# # x = torch.unsqueeze(torch.from_numpy(x),dim=1)
# x = torch.from_numpy(x)
# y = torch.from_numpy(y)
# x = torch.unsqueeze(torch.linspace(-1,1,100), dim=1)
# y = x.pow(2) + 0.2 * torch.rand(x.size())
# print(x)
# x = torch.unsqueeze(x,dim=1)
# y = torch.unsqueeze(y,dim=1)
x = torch.unsqueeze(torch.linspace(0,3,500), dim=1)
y = torch.exp(-x) * torch.sin(10*x) + torch.rand(x.size()) *0.1
x, y = Variable(x), Variable(y)
print(x.shape)
print(y.shape)
plt.scatter(x.data.numpy(),y.data.numpy())
plt.show()
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = F.sigmoid(self.hidden(x))
x = self.predict(x)
return x
net = Net(1, 50, 1)
print(net)
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss()
plt.ion()
plt.show()
for t in range(1000):
print("epochs:{}".format(t))
prediction = net(x)
loss = loss_func(prediction,y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if t % 5 == 0:
# plot and show learning process
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=5)
# plt.text("Loss={}".format(loss.data[0]))
plt.pause(0.1)
plt.ioff()
plt.show()