Dataset---Video/Motion Segmentation Dataset and Benchmark

本文介绍了多个用于视频分割任务的数据集,包括BerkeleyVideoSegmentationDataset(BVSD)、Freiburg-BerkeleyMotionSegmentationDataset(FBMS-59)及VideoSegmentationBenchmark(VSB100)等。这些数据集对于训练和评估视频分割算法至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1: Berkeley Video Segmentation Dataset (BVSD)

Dataset train

Dataset test

 

2: Freiburg-Berkeley Motion Segmentation Dataset (FBMS-59)

T. Brox, J. Malik
Object segmentation by long term analysis of point trajectories,
European Conference on Computer Vision (ECCV), September 2010.

 

P. Ochs, J. Malik, T. Brox
Segmentation of moving objects by long term video analysis,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014.

 

BMS-26 dataset and evaluation software (260MB)

FBMS-59 training set (504MB)

FBMS-59 test set (386MB)

FBMS-59 evaluation software

 

3: Video Segmentation Benchmark (VSB100)

Training set(40 Videos, external link to Berkeley server)

Test set(60 Videos, external link to Berkeley server)

Local links for Train and Test set:

Train set
Test set

 

4: VSB100: A Unified Video Segmentation Benchmark

 

Benchmark code

 

 

 

 

 

 

 

 

> data=/home/wuwei/dataset/args.yaml \ > model=yolov8n.pt \ > epochs=100 \ > imgsz=640 \ Traceback (most recent call last): File "/home/wuwei/anaconda3/envs/yolov8_new/bin/yolo", line 8, in <module> sys.exit(entrypoint()) File "/home/wuwei/anaconda3/envs/yolov8_new/lib/python3.10/site-packages/ultralytics/cfg/__init__.py", line 907, in entrypoint check_dict_alignment(full_args_dict, {a: ""}) File "/home/wuwei/anaconda3/envs/yolov8_new/lib/python3.10/site-packages/ultralytics/cfg/__init__.py", line 498, in check_dict_alignment raise SyntaxError(string + CLI_HELP_MSG) from e SyntaxError: ' ' is not a valid YOLO argument. Arguments received: ['yolo', 'detect', 'train', 'data=/home/wuwei/dataset/args.yaml', 'model=yolov8n.pt', 'epochs=100', 'imgsz=640', ' ']. Ultralytics 'yolo' commands use the following syntax: yolo TASK MODE ARGS Where TASK (optional) is one of ['obb', 'pose', 'detect', 'segment', 'classify'] MODE (required) is one of ['val', 'export', 'train', 'track', 'benchmark', 'predict'] ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg' 1. Train a detection model for 10 epochs with an initial learning_rate of 0.01 yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01 2. Predict a YouTube video using a pretrained segmentation model at image size 320: yolo predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320 3. Val a pretrained detection model at batch-size 1 and image size 640: yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640 4. Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required) yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128 5. Ultralytics solutions usage yolo solutions count or in ['crop', 'blur', 'workout', 'heatmap', 'isegment', 'visioneye', 'speed', 'queue', 'analytics', 'inference', 'trackzone'] source="path/to/video.mp4" 6. Run special commands: yolo help yolo checks yolo version yolo settings yolo copy-cfg yolo cfg yolo solutions help Docs: https://docs.ultralytics.com Solutions: https://docs.ultralytics.com/solutions/ Community: https://community.ultralytics.com GitHub: https://github.com/ultralytics/ultralytics
最新发布
07-10
<think>我们正在处理用户关于YOLOv8训练命令的问题。用户提供的命令是:`yolo train detect data=/home/wuwei/dataset/args.yaml model=yolov8n.pt epochs=100 imgsz=640` 根据引用[1]中的示例,正确的训练命令格式应该是: yolo detect train data=... model=... ... 而用户写的是:`yolo train detect ...`,这颠倒了`detect`和`train`的顺序。 正确的命令应该是:`yolo detect train data=/home/wuwei/dataset/args.yaml model=yolov8n.pt epochs=100 imgsz=640` 另外,引用[2]提供了使用Python脚本进行训练的方式,但用户使用的是命令行,所以我们主要参考引用[1]。 因此,我们需要指出用户命令中的语法错误,并给出正确的命令。 同时,根据用户的问题,我们生成相关问题。</think>### YOLOv8训练命令修正与指导 您提供的命令`yolo train detect data=/home/wuwei/dataset/args.yaml model=yolov8n.pt epochs=100 imgsz=640`存在语法错误。根据Ultralytics官方文档[^1],正确的命令结构应为: ```bash yolo detect train data=/home/wuwei/dataset/args.yaml model=yolov8n.pt epochs=100 imgsz=640 ``` #### 错误分析: 1. **动词顺序错误**:`detect`和`train`顺序颠倒,正确格式是`yolo detect train` 2. **参数格式正确**:`data`/`model`等参数格式正确,使用`=`连接参数名和值 #### 完整训练流程: 1. **准备数据**: ```bash yolo detect data=/home/wuwei/dataset/args.yaml ``` 2. **启动训练**(修正后): ```bash yolo detect train data=/home/wuwei/dataset/args.yaml \ model=yolov8n.pt \ epochs=100 \ imgsz=640 ``` 3. **Python API方式**(备选方案): ```python from ultralytics import YOLO model = YOLO("yolov8n.pt") # 加载预训练模型 results = model.train(data="/home/wuwei/dataset/args.yaml", epochs=100, imgsz=640) ``` #### 关键参数说明: - `data`:YAML格式的数据集配置文件路径 - `model`:预训练模型权重(`.pt`)或模型结构(`.yaml`) - `epochs`:训练轮次(默认100) - `imgsz`:输入图像尺寸(默认640) - 其他可选参数:`batch`(批次大小)、`device`(指定GPU)等[^1] > **注意**:当使用`.yaml`模型结构文件时,需添加`pretrained=模型权重.pt`参数才能加载预训练权重[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值