Compound Literals

本文深入探讨了C语言中结构体初始化的使用方法,包括构造函数式的初始化、构造数组的方式以及GCC的扩展特性。文章还讨论了在C++中使用复合字面量的注意事项和潜在风险。

ISO C99 supports compound literals. A compound literal looks like a cast containing an initializer. Its value is an object of the type specified in the cast, containing the elements specified in the initializer; it is an lvalue. As an extension, GCC supports compound literals in C90 mode and in C++, though the semantics are somewhat different in C++.

Usually, the specified type is a structure. Assume that struct foo and structure are declared as shown:

     struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a compound literal:

     structure = ((struct foo) {x + y, 'a', 0});

This is equivalent to writing the following:

     {
       struct foo temp = {x + y, 'a', 0};
       structure = temp;
     }

You can also construct an array, though this is dangerous in C++, as explained below. If all the elements of the compound literal are (made up of) simple constant expressions, suitable for use in initializers of objects of static storage duration, then the compound literal can be coerced to a pointer to its first element and used in such an initializer, as shown here:

     char **foo = (char *[]) { "x", "y", "z" };

Compound literals for scalar types and union types are also allowed, but then the compound literal is equivalent to a cast.

As a GNU extension, GCC allows initialization of objects with static storage duration by compound literals (which is not possible in ISO C99, because the initializer is not a constant). It is handled as if the object is initialized only with the bracket enclosed list if the types of the compound literal and the object match. The initializer list of the compound literal must be constant. If the object being initialized has array type of unknown size, the size is determined by compound literal size.

     static struct foo x = (struct foo) {1, 'a', 'b'};
     static int y[] = (int []) {1, 2, 3};
     static int z[] = (int [3]) {1};

The above lines are equivalent to the following:

     static struct foo x = {1, 'a', 'b'};
     static int y[] = {1, 2, 3};
     static int z[] = {1, 0, 0};

In C, a compound literal designates an unnamed object with static or automatic storage duration. In C++, a compound literal designates a temporary object, which only lives until the end of its full-expression. As a result, well-defined C code that takes the address of a subobject of a compound literal can be undefined in C++, so the C++ compiler rejects the conversion of a temporary array to a pointer. For instance, if the array compound literal example above appeared inside a function, any subsequent use of ‘foo’ in C++ has undefined behavior because the lifetime of the array ends after the declaration of ‘foo’.

As an optimization, the C++ compiler sometimes gives array compound literals longer lifetimes: when the array either appears outside a function or has const-qualified type. If ‘foo’ and its initializer had elements of ‘char *const’ type rather than ‘char *’, or if ‘foo’ were a global variable, the array would have static storage duration. But it is probably safest just to avoid the use of array compound literals in code compiled as C++.

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
在 C 语言中,如果希望将结构体中的某个特定成员初始化为全 `0`,可以根据不同的情况采取以下几种方法: ### 方法一:使用指定初始化器 利用 C99 及之后的标准支持的指定初始化器功能,可以直接对目标成员进行单独初始化。未提及的其他成员则会依据其类型获得默认初始值(如整数型为 `0`,浮点型为 `0.0`,指针为 `NULL` 等)。 ```c struct Example { int firstMember; int secondMember; double thirdMember; }; struct Example example = { .secondMember = 0 }; // 将第二个成员初始化为0[^3] ``` 这里需要注意的是,虽然只明确设置了 `.secondMember=0` ,但是由于这是在一个大括号 `{}` 中完成的操作,默认其余部分也会被合理地赋予零值或其他安全初态。 --- ### 方法二:借助复合文字(Compound Literals) 这是一种更为现代的技术,尤其适合于那些需要临时创建并立即使用的对象场合之下。通过 `(type){values}` 形式的表达式来构建匿名实体,再将其地址传递给指向对应类型的指针变量。 ```c #include <stdio.h> #include <stddef.h> /* offsetof */ #define CLEAR_MEMBER(obj, member) memset(&obj.member, 0, sizeof((obj).member)) struct TestStruct { short fieldA; long fieldB; char buffer[128]; }; void clearSecondField() { struct TestStruct instance = (struct TestStruct){ .fieldA = -1 }; CLEAR_MEMBER(instance, fieldB); // 清除第二个字段至全0状态[^5] } ``` 上述例子展示了如何定义宏命令简化重复劳动过程的同时还保留了较好的移植特性。 --- ### 方法三:运用memset函数清零整个区域后再调整必要项 当面对较为复杂的嵌套或者含有柔性数组等情况时,可能难以直接应用前述技巧。此时可以先调用标准库提供的 `memset()` 函数把一片连续内存区间内的所有字节置成相同的数值(通常是 `\0`),然后再手动恢复非目标位置原有的配置参数。 ```c #include <string.h> struct ComplexType { int flag; union DataUnion { int integerData; float floatingPointData; } data; void (*callbackFunction)(void); }; void setupStructureWithZeroedMiddlePart(struct ComplexType *targetPtr) { memset(targetPtr + offsetof(struct ComplexType, data), '\0', sizeof(((struct ComplexType*)NULL)->data)); // 零化中间那块区域[^6] targetPtr->flag = SOME_PREDEFINED_CONSTANT_VALUE; // 恢复首端标记位 targetPtr->callbackFunction = &someOtherRoutineDefinedElsewhere;// 设置末端回调接口 } ``` 尽管这种方法看起来稍微繁琐一点,但它确实提供了极大的灵活性,并且几乎兼容所有的主流平台环境。 --- ### 总结推荐方案 对于简单的应用场景来说,“**指定初始化器**”无疑是最快捷方便的办法;而对于更加棘手的情形,则应该考虑结合“**compound literals**”或是适当部署“**memset**”策略加以应对。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值