LSTM为什么用sigmoid,tanh不用relu?

https://cloud.tencent.com/developer/article/1498959

1. why is an activation function not being zero-centred an disadvantage?

Say there are two parameters w1 and w2. If the gradients of two dimensions are always of the same sign, it means we can only move roughly in the direction of northeast or southwest in the parameter space.
If our goal (the optimal solution in the weights hyperspace) happens to be in the northwest, we can only move in a zig-zagging fashion to get there; i.e. very inefficient.
However, it is not clear why the gradients of the parameters would be the same sign — this may just be an empirical result for non-zero centred activation functions.

2、神经网络中的激活函数:对比ReLU与Sigmoid、Tanh的优缺点?ReLU有哪些变种?

  1. 优点:

从计算的角度上,Sigmoid和Tanh激活函数均需要计算指数,复杂度高,而ReLU只需要一个阈值即可得到激活值;
ReLU的非饱和性可以有效地解决梯度消失的问题,提供相对宽的激活边界。
ReLU的单侧抑制提供了网络的稀疏表达能力。
修正线性单元(Rectified Linear Unit,ReLU):ReLU函数被认为有生物上的解释性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值