计算机操作系统
进程、线程
进程线程定义、区别、通信方式
基本概念
进程是对运行时程序的封装,是系统进行资源调度和分配的的基本单位,实现了操作系统的并发;
线程是进程的子任务,是CPU调度和分派的基本单位,用于保证程序的实时性,实现进程内部的并发;线程是操作系统可识别的最小执行和调度单位。每个线程都独自占用一个虚拟处理器:独自的寄存器组,指令计数器和处理器状态。每个线程完成不同的任务,但是共享同一地址空间(也就是同样的动态内存,映射文件,目标代码等等),打开的文件队列和其他内核资源。
区别
1.一个线程只能属于一个进程,而一个进程可以有多个线程,但至少有一个线程。线程依赖于进程而存在。
2.进程在执行过程中拥有独立的内存单元,而多个线程共享进程的内存。(资源分配给进程,同一进程的所有线程共享该进程的所有资源。同一进程中的多个线程共享代码段(代码和常量),数据段(全局变量和静态变量),扩展段(堆存储)。但是每个线程拥有自己的栈段,栈段又叫运行时段,用来存放所有局部变量和临时变量。)
3.进程是资源分配的最小单位,线程是CPU调度的最小单位;
4.系统开销: 由于在创建或撤消进程时,系统都要为之分配或回收资源,如内存空间、I/o设备等。因此,操作系统所付出的开销将显著地大于在创建或撤消线程时的开销。类似地,在进行进程切换时,涉及到整个当前进程CPU环境的保存以及新被调度运行的进程的CPU环境的设置。而线程切换只须保存和设置少量寄存器的内容,并不涉及存储器管理方面的操作。可见,进程切换的开销也远大于线程切换的开销。
5.通信:由于同一进程中的多个线程具有相同的地址空间,致使它们之间的同步和通信的实现,也变得比较容易。进程间通信IPC,线程间可以直接读写进程数据段(如全局变量)来进行通信——需要进程同步和互斥手段的辅助,以保证数据的一致性。在有的系统中,线程的切换、同步和通信都无须操作系统内核的干预
6.进程编程调试简单可靠性高,但是创建销毁开销大;线程正相反,开销小,切换速度快,但是编程调试相对复杂。
7.进程间不会相互影响 ;线程一个线程挂掉将导致整个进程挂掉
8.进程适应于多核、多机分布;线程适用于多核
PCB包括哪些内容
1、进程标识符 name
每个进程都必须有一个唯一的标识符,可以是字符串,也可以是一个数字。
2、进程当前状态 status
说明进程当前所处的状态。为了管理的方便,系统设计时会将相同的状态的 进程组成一个队列,如就绪进程队列,等待 进程则要根据等待的事件组成多个等待队列,如等待打印机队列。
3、进程相应的程序和数据地址
以便把PCB与其程序和数据联系起来。
4、进程资源清单
列出所拥有的除CPU外的资源记录,如拥有的I/O设备, 打开的文件列表等。
5、进程优先级 priority
进程的优先级反映进程的紧迫程度,通常由用户指定和系统设置。
6、CPU现场保护区 cpustatus
当进程因某种原因不能继续占用CPU时(如等待打印机),释放CPU,这时就要将CPU的各种状态信息保护起来,为将来再次得到处理机恢复CPU的各种状态,继续运行。
7、进程同步与通信机制
用于实现进程间互斥、同步和通信所需的信号量等。
8、进程所在队列PCB的链接字
根据进程所处的现行状态,进程相应的PCB参加到不同队列中。PCB链接字指出该进程所在队列中下一个进程PCB的首地址。
9、与进程有关的其他信息
如进程记账信息,进程占用CPU的时间等。
通信方式
进程间通信的方式:
进程间通信主要包括管道、系统IPC(包括消息队列、信号量、信号、共享内存等)、以及套接字socket。
1.管道:
管道主要包括无名管道和命名管道:管道可用于具有亲缘关系的父子进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信
1.1 普通管道PIPE:
1)它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端
2)它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)
3)它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。
1.2 命名管道FIFO:
1)FIFO可以在无关的进程之间交换数据
2)FIFO有路径名与之相关联,它以一种特殊设备文件形式存在于文件系统中。
管道实现
-
父进程调用pipe函数创建管道,得到两个文件描述符fd[0]、fd[1]指向管道的读端和写端。
-
父进程调用fork创建子进程,那么子进程也有两个文件描述符指向同一管道。
-
父进程关闭管道读端,子进程关闭管道写端。父进程可以向管道中写入数据,子进程将管道中的数据读出。由于管道是利用环形队列实现的,数据从写端流入管道,从读端流出,这样就实现了进程间通信。
-
系统IPC:
2.1 消息队列
用msg实现消息队列
消息队列,是消息的链接表,存放在内核中。一个消息队列由一个标识符(即队列ID)来标记。 (消息队列克服了信号传递信息少,管道只能承载无格式字节流以及缓冲区大小受限等特点)具有写权限得进程可以按照一定得规则向消息队列中添加新信息;对消息队列有读权限得进程则可以从消息队列中读取信息;
特点:
1)消息队列是面向记录的,其中的消息具有特定的格式以及特定的优先级。
2)消息队列独立于发送与接收进程。进程终止时,消息队列及其内容并不会被删除。
3)消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取。
与命名管道相比,消息队列的优势在于,
1、消息队列也可以独立于发送和接收进程而存在,从而消除了在同步命名管道的打开和关闭时可能产生的困难。
2、同时通过发送消息还可以避免命名管道的同步和阻塞问题,不需要由进程自己来提供同步方法。
3、接收程序可以通过消息类型有选择地接收数据,而不是像命名管道中那样,只能默认地接收。
2.2 信号量semaphore
信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器,可以用来控制多个进程对共享资源的访问。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。
特点:
1)信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。
2)信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。
3)每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。
4)支持信号量组。
2.3 信号signal
信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。
2.4 共享内存(Shared Memory)
它使得多个进程可以访问同一块内存空间,不同进程可以及时看到对方进程中对共享内存中数据得更新。这种方式需要依靠某种同步操作,如互斥锁和信号量等
特点:
1)共享内存是最快的一种IPC,因为进程是直接对内存进行存取
2)因为多个进程可以同时操作,所以需要进行同步
3)信号量+共享内存通常结合在一起使用,信号量用来同步对共享内存的访问
消息队列和管道的区别以及和共享内存相比效率低的原因?
参考
参考
3.套接字SOCKET:
socket也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同主机之间的进程通信。
进程关闭后这些通信方式会不会消失
不会。
进程间通信使用的数据结构:管道、socket、共享内存、消息队列、信号量等,是属于内核级的,一旦创建后就由内核管理,若进程不对其主动释放,那么这些变量会一直存在,除非重启系统。
线程间通信的方式:
临界区:通过多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问;
互斥量Synchronized/Lock:采用互斥对象机制,只有拥有互斥对象的线程才有访问公共资源的权限。因为互斥对象只有一个,所以可以保证公共资源不会被多个线程同时访问
信号量Semphare:为控制具有有限数量的用户资源而设计的,它允许多个线程在同一时刻去访问同一个资源,但一般需要限制同一时刻访问此资源的最大线程数目。
事件(信号),Wait/Notify:通过通知操作的方式来保持多线程同步,还可以方便的实现多线程优先级的比较操作
多进程和多线程的使用场景
多线程模型主要优势为线程间切换代价较小,因此适用于I/O密集型的工作场景,因此I/O密集型的工作场景经常会由于I/O阻塞导致频繁的切换线程。同时,多线程模型也适用于单机多核分布式场景。
多进程模型,适用于CPU密集型。同时,多进程模型也适用于多机分布式场景中,易于多机扩展。
进程状态转换图
1)创建状态:进程正在被创建
2)就绪状态:进程被加入到就绪队列中等待CPU调度运行
3)执行状态:进程正在被运行
4)等待阻塞状态:进程因为某种原因,比如等待I/O,等待设备,而暂时不能运行。
5)终止状态:进程运行完毕
linux一个进程默认会有几个线程
一个线程默认1M空间,一个进程2G,随意理论上是2048个
进程在Linux系统中有哪些状态
参考
在Linux系统中,一个进程被创建之后,在系统中可以有下面5种状态。进程的当前状态记录在进程控制块的state成员中。
就绪状态和运行状态
就绪状态的状态标志state的值为TASK_RUNNING。此时,程序已被挂入运行队列,处于准备运行状态。一旦获得处理器使用权,即可进入运行状态。
当进程获得处理器而运行时 ,state的值仍然为TASK_RUNNING,并不发生改变;但Linux会把一个专门用来指向当前运行任务的指针current指向它,以表示它是一个正在运行的进程。
可中断等待状态
状态标志state的值为TASK_INTERRUPTIBL。此时,由于进程未获得它所申请的资源而处在等待状态。一旦资源有效或者有唤醒信号,进程会立即结束等待而进入就绪状态。
不可中断等待状态
状态标志state的值为TASK_UNINTERRUPTIBL。此时,进程也处于等待资源状态。一旦资源有效,进程会立即进入就绪状态。这个等待状态与可中断等待状态的区别在于:处于TASK_UNINTERRUPTIBL状态的进程不能被信号量或者中断所唤醒,只有当它申请的资源有效时才能被唤醒。
这个状态被应用在内核中某些场景中,比如当进程需要对磁盘进行读写,而此刻正在DMA中进行着数据到内存的拷贝,如果这时进程休眠被打断(比如强制退出信号)那么很可能会出现问题,所以这时进程就会处于不可被打断的状态下。
停止状态
状态标志state的值为TASK_STOPPED。当进程收到一个SIGSTOP信号后,就由运行状态进入停止状态,当受到一个SIGCONT信号时,又会恢复运行状态。这种状态主要用于程序的调试,又被叫做“暂停状态”、“挂起状态”。
中止状态
状态标志state的值为TASK_DEAD。进程因某种原因而中止运行,进程占有的所有资源将被回收,除了task_struct结构(以及少数资源)以外,并且系统对它不再予以理睬