回归与logistic regression

这篇博客详细介绍了线性回归和Logistic Regression的概念与应用。线性回归通过极大似然估计解释最小二乘法,利用高斯的对数似然函数找到最优参数。而Logistic Regression使用sigmoid函数进行非线性转换,参数估计基于二项分布的似然函数,通过梯度下降法求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:7月算法——邹博关于回归的讲义

1:线性回归

线性回归是求一个参数theata ,去拟合大部分样本,线性回归表达式:

                                                                 

2:用极大似然估计解释最小二乘法:

函数值可以写为:

                                                                 

\varepsilon表示误差,根据中心极限定理,\varepsilon是独立同分布的,服从均值为0,方差为某个定值的\delta^2的高斯分布。

                                               

那么,关于误差\varepsilon的似然函数公式为:

                                               

3:高斯的对数似然与最小二乘:

                                     

我们要最大似然,即求J(theata)最小:

                                                 

对J求梯度,求解theata:

                

                         

 

4:因为直接求均矩阵的逆在工程上开销比较大,我们实际代码中一般采用梯度下降算法求解theata的值,

           

梯度方向计算:

         

5:Logistic 回归 

5.1  logistic函数,也称为sigmid函数:

                                                              

因此,logistic回归表达式为:

                                          

sigmid函数有一个特性,其导数g(z){}'=

                                              

5.2 logistic 参数估计

假定数据分布符合二项分布,

              

5.3 似然函数

                        

              

5.4 梯度下降求解:

              

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值