题目链接:HDU 5761
题面:
Rower Bo
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 917 Accepted Submission(s): 320
Special Judge
Rower Bo is placed at (0,a) at first.He wants to get to origin (0,0) by boat.Boat speed relative to water is v1 ,and the speed of the water flow is v2 .He will adjust the direction of v1 to origin all the time.
Your task is to calculate how much time he will use to get to origin.Your answer should be rounded to four decimal places.
If he can't arrive origin anyway,print"Infinity"(without quotation marks).
For each test case,there is only one line containing three integers a,v1,v2 .
0≤a≤100 , 0≤v1,v2,≤100 , a,v1,v2 are integers
If the absolute error between your answer and the standard answer is no more than 10−4 , your solution will be accepted.
2 3 3 2 4 3
Infinity 1.1428571429
一艘船从(0,a)点出发,希望到达(0,0)点,其每时每刻都受到水流水平向右的速度v2,以及其本身始终朝向(0,0)点的速度v1,求到达(0,0)点所需时间。
解题:
因为v1有向下的分速度,故肯定会到达x轴,但达到x轴能否到达(0,0)点,是看v1,v2的大小关系,如果v1<=v2,那么是肯定到不了的,输出Infinity,但a=0是特殊情况,直接输出0。队友比赛时写了个模拟程序,奈何精度不够或T,但却为我们猜公式提供了遍历,我们当时是猜出来的.....
【官方题解】
1010 Rower Bo
首先这个题微分方程强解显然是可以的,但是可以发现如果设参比较巧妙就能得到很方便的做法。
先分解v1v1,
设船到原点的距离是rr,容易列出方程
drdt=v2cosθ−v1dtdr=v2cosθ−v1
dxdt=v2−v1cosθdtdx=v2−v1cosθ
上下界都是清晰的,定积分一下:
0−a=v2∫0Tcosθdt−v1T0−a=v2∫0Tcosθdt−v1T
0−0=v2T−v1∫0Tcosθdt0−0=v2T−v1∫0Tcosθdt
直接把第一个式子代到第二个里面
v2T=v1v2(−a+v1T)v2T=v2v1(−a+v1T)
T=v1av12−v22T=v12−v22v1a
这样就很Simple地解完了,到达不了的情况就是v1<v2v1<v2(或者a>0a>0且v1=v2v1=v2)。