一、基本概念
树:树是节点的有限集合。
孩子:对于B E,F肯定是孩子,对于D G和H是孩子。
双亲:最顶端根节点A肯定是双亲。
度:A节点度为3,B节点的度为2,C节点度为0。
叶子:对于一棵树终端节点就是叶子。如E,F,G和H.
根:对于一棵树非终端节点就是根。如A,B和D.
有序树:有序树和无序树是相对的概念,B节点有两个孩子E和F,如果E和F不可以换顺序则为有序树。
无序树:有序树和无序树是相对的概念,B节点有两个孩子E和F,如果E和F可以换顺序则为无序树。
祖先:指定当前节点向上的一直到总的根节点之前所路过的所有节点。
子孙:从该节点开始的向下伸出的节点以及伸出节点的子节点。举例:对于A节点下面所有的节点都为其子孙,对于D节点G,H为其子孙。
节点深度:节点深度与所在的层是统一的,如A深度为1,B,C,D深度为2,E,F,G,H深度为3
树的深度:上图树的深度为3
森林:多颗独立的树组成森林。
二叉树:所有节点的度都小于等于2
二叉树的遍历:前序遍历(根左右)、中序遍历(左根右)、后续遍历(左右根)。
用途:压缩软件 赫夫曼编码 人机对战(不断进行树的搜索找到最佳的对战方法让机器做出最佳的当前选择)
二、数组表示二叉树
我们使用数组表示二叉树,共包含Tree.h,Tree.cpp和demo.cpp
Tree.h
#ifndef TREE_H
#define TREE_H
class Tree
{
public:
Tree(int size,int *pRoot); //创建树
~Tree(); //销毁树
int *SearchNode(int nodeIndex); //根据索引寻找节点
bool AddNode(int nodeIndex, int direction, int *pNode); //添加节点
bool DeleteNode(int nodeIndex, int *pNode); //删除节点
void TreeTraverse(); //遍历节点
private:
int *m_pTree;
int m_iSize;
};
#endif
Tree.cpp
#include <iostream>
#include "Tree.h"
using namespace std;
Tree::Tree(int size, int *pRoot){
m_iSize = size;
m_pTree = new int[size];
for (int i = 0; i < size;i++)
{
m_pTree[i] = 0;
}
m_pTree[0] = *pRoot;
}
Tree::~Tree(){
delete[]m_pTree;
m_pTree = NULL;
}
int *Tree::SearchNode(int nodeIndex){
if (nodeIndex < 0 || nodeIndex >= m_iSize)
{
return NULL;
}
if (m_pTree[nodeIndex] == 0)
{
return NULL;
}
return &m_pTree[nodeIndex];
}
bool Tree::AddNode(int nodeIndex, int direction, int *pNode){
if (nodeIndex < 0 || nodeIndex >= m_iSize)
{
return false;
}
if (m_pTree[nodeIndex] == 0)
{
return false;
}
if (direction == 0)
{
if (nodeIndex * 2 + 1 >= m_iSize)
{
return false;
}
if (m_pTree[nodeIndex * 2 + 1] != 0)
{
return false;
}
m_pTree[nodeIndex * 2 + 1] = *pNode;
}
if (direction == 1)
{
if (nodeIndex * 2 + 2 >= m_iSize)
{
return false;
}
if (m_pTree[nodeIndex * 2 + 2] != 0)
{
return false;
}
m_pTree[nodeIndex * 2 + 2] = *pNode;
}
return true;
}
bool Tree::DeleteNode(int nodeIndex, int *pNode){
if (nodeIndex < 0 || nodeIndex >= m_iSize)
{
return false;
}
if (m_pTree[nodeIndex] == 0)
{
return false;
}
*pNode = m_pTree[nodeIndex];
m_pTree[nodeIndex] = 0;
return true;
}
void Tree::TreeTraverse(){
for (int i = 0; i < m_iSize;i++)
{
cout << m_pTree[i] << " ";
}
cout << endl;
}
demo.cpp
/************************************************************************/
/* 二叉树(数组表示)
完成数的基本操作
1.树的创建和销毁
2.树中节点的搜索
3.树中节点的添加与删除
4.树中节点的遍历
BOOL CreateTree(Tree **pTree,Node *pRoot); //创建树
void DestoryTree(Tree *pTree); //销毁树
Node *SearchNode(Tree *pTree,int nodeIndex); //根据索引寻找节点
BOOL AddNode(Tree *pTree,int nodeIndex,int direction,Node *pNode); //添加节点
BOOL DeleteNode(Tree *pTree,int nodeIndex,Node *pNode); //删除节点
void TreeTraverse(Tree *pTree); //遍历
关于数组与树之间的算法转换
int tree[n] 3 5 8 2 6 9 7 父亲节点下标*2+1 该节点左
父亲节点下标*2+2 该节点右
3(0)
5(1) 8(2)
2(3) 6(4) 9(5) 7(6)
*/
/************************************************************************/
#include <iostream>
#include <stdlib.h>
#include "Tree.h"
using namespace std;
int main(void){
int root = 3;
Tree *pTree = new Tree(10,&root);
int node1 = 5;
int node2 = 8;
pTree->AddNode(0, 0, &node1);
pTree->AddNode(0, 1, &node2);
int node3 = 2;
int node4 = 6;
pTree->AddNode(1, 0, &node3);
pTree->AddNode(1, 1, &node4);
int node5 = 9;
int node6 = 7;
pTree->AddNode(2, 0, &node5);
pTree->AddNode(2, 1, &node6);
int node = 0;
pTree->DeleteNode(6, &node);
cout << "node=" << node << endl;
pTree->TreeTraverse();
int *p = pTree->SearchNode(2);
cout << "node=" << *p << endl;
delete pTree;
system("pause");
return 0;
}
三、链表表示二叉树
Tree.h
/*
二叉树:链表实现
Tree(); //创建树
~Tree(); //销毁树
Node *SearchNode(int nodeIndex); //搜索节点
bool AddNode(int nodeIndex,int direction,Node *pNode); //添加节点
bool DeleteNode(int nodeIndex,Node *pNode); //删除节点
void PreorderTraversal(); //前序遍历
void InorderTraversal(); //中序遍历
void PostorderTraversal(); //后序遍历
节点要素:索引 数据 左孩子指针 右孩子指针 父节点指针
前序遍历: 0 1 3 4 2 5 6
中序遍历: 3 1 4 0 5 2 6
后序遍历: 3 4 1 5 6 2 0
(0)
5(1) 8(2)
2(3) 6(4) 9(5) 7(6)
*/
#ifndef TREE_H
#define TREE_H
#include "Node.h"
class Tree
{
public:
Tree(); //创建树
~Tree(); //销毁树
Node *SearchNode(int nodeIndex); //搜索节点
bool AddNode(int nodeIndex, int direction, Node *pNode); //添加节点
bool DeleteNode(int nodeIndex, Node *pNode); //删除节点
void PreorderTraversal(); //前序遍历
void InorderTraversal(); //中序遍历
void PostorderTraversal(); //后序遍历
private:
Node *m_pRoot;
};
#endif
Tree.cpp
#include "Tree.h"
Tree::Tree(){
m_pRoot = new Node();
}
Tree::~Tree(){
//DeleteNode(0, NULL);
m_pRoot->DeleteNode();
}
Node *Tree::SearchNode(int nodeIndex){
return m_pRoot->SearchNode(nodeIndex);
}
bool Tree::AddNode(int nodeIndex, int direction, Node *pNode){
Node *temp = SearchNode(nodeIndex);
if (temp ==NULL)
{
return false;
}
Node *node = new Node();
if (node==NULL)
{
return false;
}
node->index = pNode->index;
node->data = pNode->data;
node->pParent = temp;
if (direction==0)
{
temp->pLChild = node;
}
if (direction==1)
{
temp->pRChild = node;
}
return true;
}
bool Tree::DeleteNode(int nodeIndex, Node *pNode){
Node *temp = SearchNode(nodeIndex);
if (temp == NULL)
{
return false;
}
if (pNode!=NULL)
{
pNode->data = temp->data;
}
temp->DeleteNode();
}
void Tree::PreorderTraversal(){
m_pRoot->PreorderTraversal();
}
void Tree::InorderTraversal(){
m_pRoot->InorderTraversal();
}
void Tree::PostorderTraversal(){
m_pRoot->PostorderTraversal();
}
Node.h
#ifndef NODE_H
#define NODE_H
#include <stdio.h>
class Node{
public:
Node();
Node *SearchNode(int nodeIndex); //搜索节点
void DeleteNode(); //删除节点
void PreorderTraversal();//前序遍历
void InorderTraversal(); //中序遍历
void PostorderTraversal(); //后序遍历
int index;
int data;
Node *pLChild;
Node *pRChild;
Node *pParent;
};
#endif
Node.cpp
#include "Node.h"
#include <iostream>
using namespace std;
Node::Node(){
index = 0;
data = 0;
pLChild = NULL;
pRChild = NULL;
pParent = NULL;
}
Node *Node::SearchNode(int nodeIndex){
if (this->index == nodeIndex)
{
return this;
}
Node *temp = NULL;
if (this->pLChild != NULL)
{
if (this->pLChild->index == nodeIndex)
{
return this->pLChild;
}
else
{
temp = this->pLChild->SearchNode(nodeIndex);
if (temp!=NULL)
{
return temp;
}
}
}
if (this->pRChild != NULL)
{
if (this->pRChild->index == nodeIndex)
{
return this->pRChild;
}
else
{
temp = this->pRChild->SearchNode(nodeIndex);
if (temp != NULL)
{
return temp;
}
}
}
return NULL;
}
void Node::DeleteNode(){
if (this->pLChild!=NULL)
{
this->pLChild->DeleteNode();
}
if (this->pRChild!=NULL)
{
this->pRChild->DeleteNode();
}
if (this->pParent!=NULL)
{
if (this->pParent->pLChild==this)
{
this->pParent->pLChild = NULL;
}
if (this->pParent->pRChild == this)
{
this->pParent->pRChild = NULL;
}
}
delete this;
}
void Node::PreorderTraversal(){
cout << this->index << " " << this->data << endl;
if (this->pLChild != NULL)
{
this->pLChild->PreorderTraversal();
}
if (this->pRChild != NULL)
{
this->pRChild->PreorderTraversal();
}
}
void Node::InorderTraversal(){
if (this->pLChild != NULL)
{
this->pLChild->InorderTraversal();
}
cout << this->index << " " << this->data << endl;
if (this->pRChild != NULL)
{
this->pRChild->InorderTraversal();
}
}
void Node::PostorderTraversal(){
if (this->pLChild != NULL)
{
this->pLChild->PostorderTraversal();
}
if (this->pRChild != NULL)
{
this->pRChild->PostorderTraversal();
}
cout << this->index << " " << this->data << endl;
}
demo.cpp
#include <stdlib.h>
#include "Tree.h"
/*
前序遍历: 0 1 3 4 2 5 6
中序遍历: 3 1 4 0 5 2 6
后序遍历: 3 4 1 5 6 2 0
(0)
5(1) 8(2)
2(3) 6(4) 9(5) 7(6)
*/
int main(void){
Node *node1 = new Node();
node1->index = 1;
node1->data = 5;
Node *node2 = new Node();
node2->index = 2;
node2->data = 8;
Node *node3 = new Node();
node3->index = 3;
node3->data = 2;
Node *node4 = new Node();
node4->index = 4;
node4->data = 6;
Node *node5 = new Node();
node5->index = 5;
node5->data = 9;
Node *node6 = new Node();
node6->index = 6;
node6->data = 7;
Tree *tree = new Tree();
tree->AddNode(0, 0, node1);
tree->AddNode(0, 1, node2);
tree->AddNode(1, 0, node3);
tree->AddNode(1, 1, node4);
tree->AddNode(2, 0, node5);
tree->AddNode(2, 1, node6);
//tree->DeleteNode(6, NULL);
//tree->DeleteNode(5, NULL);
tree->DeleteNode(2, NULL);
//tree->PreorderTraversal();
//tree->InorderTraversal();
tree->PostorderTraversal();
delete tree;
system("pause");
return 0;
}
一点总结:遇到编写二叉树各个函数功能时多考虑用递归的思路实现即可。