陈雷 | DataPipeline 合伙人 & CPO
曾任 IBM 大中华区认知物联网实验室服务部首席数据科学家、资深顾问经理。十年管理经验,十五年数据科学领域与金融领域经验。综合交通大数据应用技术国家工程实验室产业创新部主任,西安交通大学软件学院大数据智能创新中心主任,中国电子学会区块链专委会委员。
在确保了实时数据融合的稳定性之后,企业开始关注数据管理能否满足数字化转型和多速IT的敏捷要求。实时数据融合产品的敏捷性、便捷性成为一个重点考量要素。
配置便捷
传统数据处理过程的构建,往往是以月为单位交付的,例如构建一个数据仓库或一个大数据平台,我们经常听到的建议是建设周期不要超过半年,即使是数据仓库构建完成之后,由于需要进行大量的代码开发,新的业务分析需求或者数据需求的交付周期也是以周为单位计算的,这很难满足业务应对市场竞争的需要,更不用说面对纷繁复杂的市场环境和竞争格局,业务形态是在不断调整变化的,这也对后端的数据支撑提出了更高的要求,数据资源作为战略资源必须在合适的时间出现在合适的地点,实时数据更是如此。
而众所周知,数据处理交付周期长的根本原因是处理过程中要面对从异构语义、映射关系到运行方式、运维方式等大量问题,这就要求实时数据融合能够在提供配置式链路定义,无代码任务构建的基础上,能够将各类涉及到运行稳定,运维管理的设置也配置化、自动化,从而帮助用户将实时数据融合从原有的研发模式转变为系统配置管理模式。