Yolov5主要代码

图像加载

# 自定义数据集,重写抽象方法
class LoadImagesAndLabels(Dataset):
    # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
    cache_version = 0.6  # dataset labels *.cache version
    rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]

    def __init__(self,
                 path,
                 img_size=640,
                 batch_size=16,
                 augment=False,
                 hyp=None,
                 rect=False,
                 image_weights=False,
                 cache_images=False,
                 single_cls=False,
                 stride=32,
                 pad=0.0,
                 min_items=0,
                 prefix=''):
        self.img_size = img_size # 输入图片的分辨率大小
        self.augment = augment # 数据增强
        self.hyp = hyp # 超参数
        self.image_weights = image_weights # 图片采样权重
        self.rect = False if image_weights else rect # 矩形训练
        # mosaic数据增强
        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)
        # mosaic增强的边界值
        self.mosaic_border = [-img_size // 2, -img_size // 2]
        self.stride = stride # 模型下采样的步长
        self.path = path
        self.albumentations = Albumentations(size=img_size) if augment else None

        # 加载图像路径
        try:
            f = []  # image files
            for p in path if isinstance(path, list) else [path]:
                # 获取数据集路径path,包含图片路径的txt文件或者包含图片的文件夹路径
                # 使用pathlib.Path生成与操作系统无关的路径
                p = Path(p)  # os-agnostic
                # 处理目录路径
                # 如果 p 是一个目录 (p.is_dir()),使用 glob.glob 递归查找目录下所有的文件。
                if p.is_dir():  # dir
                    # str(p / '**' / '*.*') 构造了一个模式来匹配所有文件。'**' 表示递归到所有子目录,'*.*' 匹配所有文件类型。
                    f += glob.glob(str(p / '**' / '*.*'), recursive=True)
                    # f = list(p.rglob('*.*'))  # pathlib
                # 处理文件路径
                # 如果 p 是一个文件 (p.is_file()),假设该文件包含图像文件路径,每行一个路径。
                elif p.is_file():  # file
                    with open(p) as t:
                        # 打开文件并读取其内容,使用strip()去掉首尾空白字符,使用splitlines()按行分割文件内容
                        t = t.read().strip().splitlines()
                        # parent文件的父目录路径,os.sep是操作系统的路径分隔符
                        parent = str(p.parent) + os.sep
                        # 遍历文件中每一行路径,如果路径以./开头,则替换为父目录路径。否则直接使用路径
                        f += [x.replace('./', parent, 1) if x.startswith('./') else x for x in t]  # to global path
                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # to global path (pathlib)
                # 处理路径不存在的情况
                else:
                    # p 既不是文件也不是目录,则抛出一场
                    raise FileNotFoundError(f'{prefix}{p} does not exist')
            # 过滤和排序图像文件路径
            # self.im_files 存储所有图像文件的路径
            self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS])  # pathlib
            # 验证结果和异常处理
            assert self.im_files, f'{prefix}No images found'
        except Exception as e:
            raise Exception(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e

预处理

缩放与填充:使用 letterbox 函数将图像调整到指定尺寸,同时保持原始宽高比,并用填充填补边界。

颜色通道转换:将图像从 BGR 格式转换为 RGB 格式,以适应模型的输入要求。

归一化:将像素值缩放到 [0, 1] 范围,通常通过除以 255 实现。

维度变换:将图像维度从 HWC(高度、宽度、通道)转换为 CHW(通道、高度、宽度),并确保数据的连续性。

数据增强(可选):如果提供了自定义的转换函数,可以应用数据增强技术,如随机裁剪、翻转等,增强训练数据的多样性

def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, ratio, (dw, dh)

训练

    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        callbacks.run('on_train_epoch_start')
        model.train()

        # Update image weights (optional, single-GPU only)
        if opt.image_weights:
            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx

        # Update mosaic border (optional)
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(3, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
        if RANK in {-1, 0}:
            pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT)  # progress bar
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            callbacks.run('on_train_batch_start')
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            with torch.cuda.amp.autocast(amp):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
            if ni - last_opt_step >= accumulate:
                scaler.unscale_(optimizer)  # unscale gradients
                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Log
            if RANK in {-1, 0}:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
                pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
                                     (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
                callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
                if callbacks.stop_training:
                    return
            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        if RANK in {-1, 0}:
            # mAP
            callbacks.run('on_train_epoch_end', epoch=epoch)
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
            if not noval or final_epoch:  # Calculate mAP
                results, maps, _ = validate.run(data_dict,
                                                batch_size=batch_size // WORLD_SIZE * 2,
                                                imgsz=imgsz,
                                                half=amp,
                                                model=ema.ema,
                                                single_cls=single_cls,
                                                dataloader=val_loader,
                                                save_dir=save_dir,
                                                plots=False,
                                                callbacks=callbacks,
                                                compute_loss=compute_loss)

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            stop = stopper(epoch=epoch, fitness=fi)  # early stop check
            if fi > best_fitness:
                best_fitness = fi
            log_vals = list(mloss) + list(results) + lr
            callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    'epoch': epoch,
                    'best_fitness': best_fitness,
                    'model': deepcopy(de_parallel(model)).half(),
                    'ema': deepcopy(ema.ema).half(),
                    'updates': ema.updates,
                    'optimizer': optimizer.state_dict(),
                    'opt': vars(opt),
                    'git': GIT_INFO,  # {remote, branch, commit} if a git repo
                    'date': datetime.now().isoformat()}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if opt.save_period > 0 and epoch % opt.save_period == 0:
                    torch.save(ckpt, w / f'epoch{epoch}.pt')
                del ckpt
                callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)

        # EarlyStopping
        if RANK != -1:  # if DDP training
            broadcast_list = [stop if RANK == 0 else None]
            dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
            if RANK != 0:
                stop = broadcast_list[0]
        if stop:
            break  # must break all DDP ranks

评价

 # Metrics
        for si, pred in enumerate(preds):
            labels = targets[targets[:, 0] == si, 1:]
            nl, npr = labels.shape[0], pred.shape[0]  # number of labels, predictions
            path, shape = Path(paths[si]), shapes[si][0]
            correct = torch.zeros(npr, niou, dtype=torch.bool, device=device)  # init
            seen += 1

            if npr == 0:
                if nl:
                    stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
                    if plots:
                        confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
                continue

            # Predictions
            if single_cls:
                pred[:, 5] = 0
            predn = pred.clone()
            scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred

            # Evaluate
            if nl:
                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
                scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
                labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
                correct = process_batch(predn, labelsn, iouv)
                if plots:
                    confusion_matrix.process_batch(predn, labelsn)
            stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0]))  # (correct, conf, pcls, tcls)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值