Lossless comparison

http://wiki.hydrogenaudio.org/index.php?title=Lossless_comparison#External_links

Comparison Table

Features FLAC WavPack TAK Monkey's OptimFROG ALAC WMA
Encoding speed fast very fast very fast fast slow average average
Decoding speed very fast very fast very fast average average fast average
Compression* 58.70% 58.0% 57.0% 55.50% 54.70% 58.50% 56.30%
Flexibility** very good very good very good very good very good bad bad
 
Error handling yes yes yes no yes   yes
Seeking yes yes yes yes yes yes yes
Tagging Vorbis tags ID3/APE APEv2 (exp.) ID3/APE ID3/APE Quicktime ASF
Hardware support very good limited no limited no good limited
Software support very good good average good average bad good
Hybrid/lossy no yes no no yes no no
Replay Gain yes yes yes no yes sort of no
RIFF chunks yes yes   yes yes   no
Streaming yes yes yes no yes yes yes
Pipe support yes yes yes yes yes no yes
Open source yes yes no yes no yes (decoding) no
Multichannel yes yes no no no yes yes
High resolution yes yes yes yes yes yes yes
OS support All All Win/Linux Wine All Win/Mac/Linux Win/Mac Win/Mac

(table continued below)

Features Shorten LA TTA LPAC MPEG-4 ALS MPEG-4 SLS Real Lossless
Encoding speed very fast slow very fast average average slow slow
Decoding speed very fast slow fast fast fast slow fast
Compression* 63.50% 53.50% 57.10% 57.20% 57.10%  ? 57.0%
Flexibility** bad average bad bad very good bad bad
 
Error handling no no yes no yes yes  
Seeking yes yes yes slow yes yes yes
Tagging no ID3v1 ID3 no yes yes Proprietary
Hardware support limited no limited no no no no
Software support very good bad average average bad bad bad
Hybrid/lossy no no no no no yes no
Replay Gain no no yes no yes yes no
RIFF chunks yes yes no yes      
Streaming no   no no yes yes yes
Pipe support yes yes no       no
Open source yes no yes no yes yes no
Multichannel no no yes no yes yes no
High resolution no no yes yes yes yes no
OS support All Win/Linux All Win/Linux/Sol All All Win/Mac/Linux

* The Compression ratio is calculated with the division of compressed size by uncompressed size * 100. So, lower is better.

Encoding speed, Decoding speed and Compression ratio are based on each encoder's default settings.

** Flexibility refers to the amount of encoding choices offered to the users (Fast/low compression, Slow/high compression and everything inbetween)

内容概要:本文档是一份计算机软考初级程序员的经典面试题汇编,涵盖了面向对象编程的四大特征(抽象、继承、封装、多态),并详细探讨了Java编程中的诸多核心概念,如基本数据类型与引用类型的区别、String和StringBuffer的差异、异常处理机制、Servlet的生命周期及其与CGI的区别、集合框架中ArrayList、Vector和LinkedList的特性对比、EJB的实现技术及其不同Bean类型的区别、Collection和Collections的差异、final、finally和finalize的作用、线程同步与异步的区别、抽象类和接口的区别、垃圾回收机制、JSP和Servlet的工作原理及其异同等。此外,还介绍了WebLogic服务器的相关配置、EJB的激活机制、J2EE平台的构成和服务、常见的设计模式(如工厂模式)、Web容器和EJB容器的功能、JNDI、JMS、JTA等J2EE核心技术的概念。 适合人群:正在备考计算机软考初级程序员的考生,或希望加深对Java编程及Web开发理解的初、中级开发人员。 使用场景及目标:①帮助考生系统复习Java编程语言的基础知识和高级特性;②为实际项目开发提供理论指导,提升编程技能;③为面试准备提供参考,帮助求职者更好地应对技术面试。 其他说明:文档不仅涉及Java编程语言的核心知识点,还包括了Web开发、企业级应用开发等方面的技术要点,旨在全面提高读者的专业素养和技术水平。文档内容详实,适合有一定编程基础的学习者深入学习和研究。
### 无损缩放技术在图像和音频处理中的应用 #### 图像的无损缩放 对于图像而言,无损缩放指的是放大或缩小图片尺寸而不损失任何原始数据的技术。一种实现方式是通过多网格反投影超分辨率方法[^1]。这种方法能够有效地恢复高分辨率图像细节,在保持原有质量的同时扩大图像规模。 此外,还有基于插值算法的方式来进行无损缩放操作。常见的有最近邻域法、双线性插值以及三次卷积插值等。这些方法可以在一定程度上保留图像特征,但在极端情况下可能会引入伪影或其他失真现象。 ```python import cv2 import numpy as np def lossless_image_scaling(image_path, scale_factor): img = cv2.imread(image_path) height, width = img.shape[:2] # 使用OpenCV库进行无损缩放 resized_img = cv2.resize(img, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_NEAREST) return resized_img ``` #### 音频的无损缩放 关于音频信号的无损缩放,则涉及到改变播放速度而不会影响音调的变化过程。这通常采用时间拉伸(Time-Stretching)技术和移调(Pitch Shifting)来完成。其中,相位 vocoder 是一种广泛应用的时间频率表示模型,它允许独立调整时间和频率参数从而达到理想的缩放效果。 Python 中可以利用 `librosa` 库轻松地执行这样的变换: ```python import libroso def time_stretch(y, rate): y_stretched = librosa.effects.time_stretch(y, rate) return y_stretched ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值