Experimental Educational Round: VolBIT Formulas Blitz K. Indivisibility —— 容斥原理

本文介绍了一道Codeforces上的编程题——K.Indivisibility的解题思路与实现代码。该题要求计算从1到n中不能被2至10之间任意数整除的整数数量,采用容斥原理解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://codeforces.com/contest/630/problem/K


K. Indivisibility
time limit per test
0.5 seconds
memory limit per test
64 megabytes
input
standard input
output
standard output

IT City company developing computer games decided to upgrade its way to reward its employees. Now it looks the following way. After a new game release users start buying it actively, and the company tracks the number of sales with precision to each transaction. Every time when the next number of sales is not divisible by any number from 2 to 10 every developer of this game gets a small bonus.

A game designer Petya knows that the company is just about to release a new game that was partly developed by him. On the basis of his experience he predicts that n people will buy the game during the first month. Now Petya wants to determine how many times he will get the bonus. Help him to know it.

Input

The only line of the input contains one integer n (1 ≤ n ≤ 1018) — the prediction on the number of people who will buy the game.

Output

Output one integer showing how many numbers from 1 to n are not divisible by any number from 2 to 10.

Examples
input
12
output
2


题解:

实际上是除去2,3,5,7的倍数,容斥原理。




代码如下:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const double eps = 1e-6;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+7;
const int maxn = 1e3+10;

int main()
{
    LL n;
    cin>>n;
    LL ans = 0, a[4] = {2,3,5,7};
    for(int s = 1; s<(1<<4); s++)
    {
        LL cnt = 0, val = 1;
        for(int j = 0; j<4; j++)
        if((1<<j)&s)
        {
            cnt++;
            val *= a[j];
        }
        ans += (cnt&1)? (n/val):(-n/val);
    }
    cout << n-ans <<endl;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值