- 记录pytorch的学习过程 – 备注多,方便查阅
- torch的基本使用方法
- 实现一个线性回归模型并测试
import torch
torch.__version__
'1.8.0+cpu'
1.torch基本的使用方法`
1.1创建一个矩阵0矩阵
x = torch.empty(5,3)
x
tensor([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
1.2创建一个随机值
x = torch.randn(5,3)
x
tensor([[ 0.9290, 0.8528, -0.4443],
[ 1.0932, -0.7507, -0.2703],
[ 0.2908, -1.6405, -0.6977],
[ 0.0574, 0.1044, 0.0233],
[ 0.0722, 0.1150, 0.3934]])
1.3构建一个全0矩阵
x = torch.zeros(5,3)
x
tensor([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
1.4直接输入数据
x = torch.tensor([5.5,3])
x
tensor([5.5000, 3.0000])
1.5 view操作可以改变矩阵的维度
x = torch.randn(4,4)
y = x.view(16)
z = x.view(-1,8)
x.shape,y.shape,z.shape
(torch.Size([4, 4]), torch.Size([16]), torch.Size([2, 8]))
1.6 Pytorch的自动求导机制
1.6.1 需要求导的,可以手动定义
x = torch.randn(3,4,requires_grad=True)
x
tensor([[-0.9228, 0.5714, -0.6876, 1.9532],
[-0.3574, -0.3873, -1.8445, -1.2344],
[-0.7455, -0.2275, -2.0875, -0.5985]], requires_grad=True)
x = torch.randn(