kruskal算法

1.算法思想
先构造一个只含n个顶点而边集为空的子图,把子图中各个顶点看成各棵树上的根结点,之后,从网的边集E中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,即把两棵树合成一棵树,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直到森林中只有一棵树,也即子图中含有n-1条边为止。
时间复杂度O(e²),使用并查集优化后复杂度为O(eloge),与网中的边数有关,适用于求边稀疏的最小生成树。
2.算法实现步骤
设图G的度为G=(V,E),设该图的最小生成树为T=(V,TE),设置边的集合TE的初始状态为空集。将图G中的边按权值从小到大排好序,然后从小的依次开始选取,若选取的边使生成树T不形成回路,则把它并入TE中,保留作为T的一条边;若选取的边使生成树形成回路,则舍弃;如此继续进行,直到使TE中包含n-1条边为止。
3.算法的关键与优化
kruskal算法实现过程中的关键和难点在于:如何判断欲加入的一条边是否与生成树中已经保留的边形成回路?我们可以将顶点划分到不同的集合中,每个集合的顶点表示一个无回路的连通分量。初始时,我们把n个顶点划分到n个集合中,每个集合只有一个顶点,表明顶点之间互不相通。当选取一条边时,若它的两个顶点分属两个不同的集合,则表明此边连通了两个不同的连通分量,因每个连通分量无回路,所以连通后得到的连通分量仍无回路。因此,这条边应该保留,且合并成两个不同的连通分量。若选取的边的两个顶点属于同一个连通分量,则应舍弃,因为一个无回路的连通分量内加入一条新边必然产生回路。

#include<cstdio>
#include<algorithm>
using namespace std;
#define MAXN 1000
struct rqmap
{
    int s,t,v;
};
rqmap map[MAXN*MAXN];
int father[MAXN],n,m,i,ingraph,ans;

int read()
{
    int w=0,c=1;
    char ch=getchar();
    while (ch<'0' || ch>'9')
      {
        if (ch=='-')
          c=-1;
        ch=getchar();
      }
    while (ch>='0' && ch<='9')
      {
        w=w*10+ch-'0';
        ch=getchar();
      }
    return w*c;
}

int find(int x)
{
    if (father[x]==x)
      return x;
    father[x]=find(father[x]);
    return father[x];
}

void union1(int a,int b)
{
    father[find(a)]=find(father[b]);
}

bool cmp(const rqmap x,const rqmap y)
{
    return x.v<y.v;
}

int main()
{
    n=read();
    m=read();
    for (i=1;i<=n;i++)
      father[i]=i;
    for (i=1;i<=m;i++)
      {
        map[i].s=read();
        map[i].t=read();
        map[i].v=read();
      }
    sort(map+1,map+1+m,cmp);
    ans=0;
    ingraph=1;
    i=0;
    while (ingraph<n)
      {
        i++;
        if (find(map[i].s)!=find(map[i].t))
          {
            ingraph++;
            ans+=map[i].v;
            union1(map[i].s,map[i].t);
          }
      }
    printf("%d",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值