大模型入门(四)—— 基于peft 微调 LLaMa模型

llama-7b模型大小大约27G,本文在单张/两张 16G V100上基于hugging face的peft库实现了llama-7b的微调。
在这里插入图片描述

1、模型和数据准备

使用的大模型:https://huggingface.co/decapoda-research/llama-7b-hf,已经是float16的模型。

微调数据集:https://github.com/LC1332/Chinese-alpaca-lora/blob/main/data/trans_chinese_alpaca_data.json

微调的代码已上传到github:https://github.com/jiangxinyang227/LLM-tuning/tree/master/llama_tuning

2、微调技巧

1)lora微调。float16的模型刚刚好存放在16G的GPU上,没有太多显存用于存放梯度、优化器等参数,因此在这里使用lora微调部分参数。

2)混合精度训练,因为llama-7b有27g,想在单张V100上加载就需要转换成float16才行,而lora参数用的是float32,需要使用混合精度训练。同时混合精度训练也会有所加速。

3)梯度累积,单张gpu在存放完模型参数,lora参数、梯度、优化器等参数之后只剩下很少的显存给到输入输出等中间变量,经测试单张V100的极限大致是batch size=1,sequence length=200,只能使用梯度累积实现mini-batch训练。

4)当有多张卡时,可以使用数据并行、模型并行等方法微调,数据并行只是将模型复制到每张GPU上,因此单张GPU的batch size仍然只能是1,模型并行会将模型均分到每个GPU上,可以增大每张GPU上的batch size,在2张V100上测试了ddp(数据并行)和 基于zero-3 + cpu offload(数据并行+模型并行+CPU)。

3、要注意的代码讲解

3.1 data_helper.py

data_helper.py中主要注意下tokenizer()函数,一是padding是在左边padding,和我们通常的右边padding不太一样;二是labels中的pad_id=-100,因为pytorch中label=-100时不参与loss的计算。

def tokenize(self, prompt, add_eos_token=True):
        # there's probably a way to do this with the tokenizer settings
        # but again, gotta move fast
        result = self.tokenizer(
            prompt,
            truncation=True,
            max_length=self.sequence_len,
            padding=False,
            return_tensors=None
        )
        input_ids, attention_mask, labels = [], [], []
        if (
            result["input_ids"][-1] != self.eos_token_id
            and len(result["input_ids"]) < self.sequence_len
            and add_eos_token
        ):
            result["input_ids"].append(self.eos_token_id)
            result["attention_mask"].append(1)
        
        pad_len = self.sequence_len - len(result["input_ids"])
        if pad_len <= 0:
            input_ids = result["input_ids"][:self.sequence_len]
            attention_mask = result["attention_mask"][:self.sequence_len]
            labels = input_ids.copy()
        else:
            input_ids = [self.pad_token_id] * pad_len + result["input_ids"]
   
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值