Tensorflow(三十四) —— GRU
import tensorflow as tf
from tensorflow import keras
import numpy as np
tf.compat.v1.disable_eager_execution()
# 加载数据集
total_words = 10000
(x_train,y_train),(x_test,y_test) = keras.datasets.imdb.load_data(num_words=total_words)
print("train_shape:",x_train.shape,y_train.shape,x_test.shape,y_test.shape)
# 数据预处理
max_len = 80
x_train = keras.preprocessing.sequence.pad_sequences(x_train,maxlen=max_len,\
padding="post",truncating = "post")
"""
post 为从末尾开始阶段
"""
x_test = keras.preprocessing.sequence.pad_sequences(x_test,maxlen = max_len,\
padding = "post",truncating = "post")
db_train = tf.data.Dataset.from_tensor_slices((x_train,y_train))
db_test = tf.data.Dataset.from_tensor_slices((x_test,y_test))
def preprocess(x,