1023 Have Fun with Numbers (20)(20 point(s))
Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input file contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:
1234567899
Sample Output:
Yes
2469135798
#include <iostream>
#include <string>
using namespace std;
int arr[10];
string doub(string s);
int main() {
string s;
cin >> s;
for (int i = 0; i < s.size(); ++i) {
arr[s[i] - '0']++;
}
string rs = doub(s);
for (int i = 0; i < rs.size(); ++i) {
arr[rs[i] - '0']--;
}
bool f = 1;
for (int i = 0; i < 10; ++i) {
if (arr[i] != 0) f = 0;
}
if (f)cout << "Yes" << endl;
else cout << "No" << endl;
cout << rs << endl;
system("pause");
return 0;
}
string doub(string s) {
string ss(s.rbegin(), s.rend());
int x,cur=0;
for (int i = 0; i <ss.size() ; ++i) {
x = ss[i] - '0';
x = (x) * 2+cur;
ss[i] = (x % 10)+'0';
cur = (x)/10;
}
while (cur) {
ss += (cur % 10) + '0';
cur /= 10;
}
string str(ss.rbegin(), ss.rend());
return str;
}