leetcode 63. Unique Paths II

本文介绍了一种使用动态规划解决带有障碍物的网格中从起点到终点的唯一路径数量的方法。针对不同情况,如起点即为障碍等进行了特殊处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
The total number of unique paths is 2.

这题的测试好恶心,居然左上角还有1的情况,请问机器人怎么站

public class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        if(obstacleGrid==null || obstacleGrid.length==0) return 0;
        int w = obstacleGrid.length, h = obstacleGrid[0].length;
        int[][] dp = new int[w][h];
        // dp[0][0] = 1;
        if(obstacleGrid[0][0] ==1) return 0;
        dp[0][0] = 1;
        for(int i=1; i<w; i++){
            if(obstacleGrid[i][0]==1){
                dp[i][0] = 0;
            }else{
                dp[i][0] = dp[i-1][0];
            }
        }

        for(int j=1; j<h; j++){
            if(obstacleGrid[0][j]==1){
                dp[0][j] = 0;
            }else{
                dp[0][j] = dp[0][j-1];
            }
        }

        for(int i=1; i<w; i++){
            for(int j = 1; j<h; j++){
                if(obstacleGrid[i][j]==1){
                    dp[i][j]=0;
                }else{
                    dp[i][j] = dp[i-1][j]+dp[i][j-1];
                }
            }
        }

        return dp[w-1][h-1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值