leetcode 198. House Robber

本文探讨了一道经典的动态规划问题:一名专业窃贼计划抢劫一条街上的房屋,但为了避免报警,不能连续抢劫相邻的两所房子。文章提供了一个有效的解决方案,通过设定两个数组来记录不同状态下的最大收益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

这种有状态选择的动态规划问题,参考上一题的方法,对每种状态设定一个数组,解法如下:

public class Solution {
    public int rob(int[] nums) {
        if(nums==null||nums.length==0) return 0;
        int[] r = new int[nums.length];
        int[] s = new int[nums.length];

        r[0] = nums[0];
        s[0] = 0;

        for(int i=1; i < nums.length; i++){
            r[i] = Math.max(r[i-1], s[i-1] + nums[i]);
            s[i] = Math.max(r[i-1], s[i-1]);
        }
        return Math.max(r[nums.length-1], s[nums.length-1]);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值