leetcode 413. Arithmetic Slices

本文介绍了一种高效算法,用于查找数组中所有构成等差序列的子序列,并详细解释了算法实现细节。
A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.

For example, these are arithmetic sequence:

1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9
The following sequence is not arithmetic.

1, 1, 2, 5, 7

A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.

A slice (P, Q) of array A is called arithmetic if the sequence:
A[P], A[p + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.

The function should return the number of arithmetic slices in the array A.


Example:

A = [1, 2, 3, 4]

return: 3, for 3 arithmetic slices in A: [1, 2, 3], [2, 3, 4] and [1, 2, 3, 4] itself.

说一说我自己的解法,很自然很好理解,同时挺高效。

首先设置一个变量pre记录以前一个节点结尾的序列的有效的个数。
设置一个变量t记录差值,一个变量start记录当前差值为t的时候的起点位置,如果新来一个点,他与前面的差值为t的话,就该扩充这个有效序列的长度,那么以该点结尾结尾的个数就应该为pre+max(istart1)
新加的部分就以将i扩充到之前有效序列后的数目
代码如下

public class Solution {
    public int numberOfArithmeticSlices(int[] A) {
        if(A.length < 3) return 0;
        int start = 0;
        int pre = 0;
        int t = 0;
        int tp;
        for(int i=1; i<A.length; i++){
            tp = A[i] - A[i-1];
            if(tp!=t){
                t = tp;
                start = i-1;
            }else{
                pre += Math.max(0, i-start-1);
            }
        }
        return pre;
    }
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值