leetcode 121. Best Time to Buy and Sell Stock

本文介绍了一种寻找股票买卖最佳时机以实现最大利润的算法。该算法通过一次遍历即可得出结果,时间复杂度为O(n)。文章提供了两种解决方案:一种是直观解法,通过记录之前的最低价格来计算当前的最大收益;另一种是使用Kadane算法,适用于价格差数组的情况。
Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

Example 1:
Input: [7, 1, 5, 3, 6, 4]
Output: 5

max. difference = 6-1 = 5 (not 7-1 = 6, as selling price needs to be larger than buying price)
Example 2:
Input: [7, 6, 4, 3, 1]
Output: 0

In this case, no transaction is done, i.e. max profit = 0.

主要是找出买入卖出的时机,其实只需要知道卖出的时间即可。这样可以将时间复杂度控制在O(n)
我的直观解法是,用一个变量pre记录访问到当前元素前的最小值,这样如果在当前位置卖出,那么买入点应该是之前最下值处。

public class Solution {
    public int maxProfit(int[] prices) {
        if(prices==null||prices.length==0) return 0;
        int res = 0;
        int pre = prices[0];
        for(int i=1; i< prices.length; i++){
            int cur = prices[i] - pre;
            res = Math.max(res, cur);
            if(prices[i] < pre) pre = prices[i];
        }
        return res;
    }
}

目前Top answer给出的是另一种解法

Kadane's Algorithm - Since no one has mentioned about this so far :) (In case if interviewer twists the input)
The logic to solve this problem is same as "max subarray problem" using Kadane's Algorithm. Since no body has mentioned this so far, I thought it's a good thing for everybody to know.

All the straight forward solution should work, but if the interviewer twists the question slightly by giving the difference array of prices, Ex: for {1, 7, 4, 11}, if he gives {0, 6, -3, 7}, you might end up being confused.

Here, the logic is to calculate the difference (maxCur += prices[i] - prices[i-1]) of the original array, and find a contiguous subarray giving maximum profit. If the difference falls below 0, reset it to zero.

    public int maxProfit(int[] prices) {
        int maxCur = 0, maxSoFar = 0;
        for(int i = 1; i < prices.length; i++) {
            maxCur = Math.max(0, maxCur += prices[i] - prices[i-1]);
            maxSoFar = Math.max(maxCur, maxSoFar);
        }
        return maxSoFar;
    }
*maxCur = current maximum value

*maxSoFar = maximum value found so far

这里核心是下面这句

 maxCur = Math.max(0, maxCur += prices[i] - prices[i-1]);

maxCur也是在当前点卖出的收益,那么一个计算方法是,如果在下一个点卖出那么可以根据收益的增加来更新下一个点的收益。还是觉得我的解法跟直观

这段代码是解决 **LeetCode 121. Best Time to Buy and Sell Stock** 的经典贪心算法解法。它的目标是找出**只进行一次买卖**的情况下,可以获得的最大利润。 --- ## 🧠 问题描述(LeetCode 121) 给定一个数组 `prices`,其中 `prices[i]` 表示某支股票第 `i` 天的价格。 你只能选择 **某一天买入** 并在 **未来某一天卖出**(不能当天买卖),计算你能获得的 **最大利润**。 --- ## ✅ 示例 ```cpp 输入: prices = [7,1,5,3,6,4] 输出: 5 解释: 第 2 天买入(价格 = 1),第 5 天卖出(价格 = 6),利润为 6 - 1 = 5。 ``` --- ## 🧩 代码详解 ```cpp class Solution { public: int maxProfit(vector<int>& prices) { int ans = 0; // 用于记录最大利润 int min_price = prices[0]; // 用于记录当前遇到的最小买入价格 for (int p : prices) { ans = max(ans, p - min_price); // 计算当前利润,更新最大利润 min_price = min(min_price, p); // 更新最小买入价格 } return ans; } }; ``` --- ## 📌 逐行解释 ### 1. 初始化 ```cpp int ans = 0; int min_price = prices[0]; ``` - `ans` 是最终要返回的最大利润,初始化为 0- `min_price` 表示当前为止最小的买入价格,初始化为第一天的价格。 ### 2. 遍历价格数组 ```cpp for (int p : prices) { ``` - 使用范围 for 遍历每一天的价格 `p`。 ### 3. 计算当前利润并更新最大利润 ```cpp ans = max(ans, p - min_price); ``` - 如果当前价格 `p` 减去 `min_price`(之前最低价)大于当前最大利润 `ans`,则更新 `ans`。 ### 4. 更新最小买入价格 ```cpp min_price = min(min_price, p); ``` - 每次遍历都要更新 `min_price`,确保我们始终用最低价买入。 --- ## 🧪 执行过程示例 以 `prices = [7,1,5,3,6,4]` 为例: | i | price | min_price | profit (price - min_price) | ans | |---|-------|-----------|-----------------------------|-----| | 0 | 7 | 7 | 0 | 0 | | 1 | 1 | 1 | 0 | 0 | | 2 | 5 | 1 | 4 | 4 | | 3 | 3 | 1 | 2 | 4 | | 4 | 6 | 1 | 5 | 5 | | 5 | 4 | 1 | 3 | 5 | 最终返回 `ans = 5`。 --- ## ⏱️ 时间与空间复杂度 - **时间复杂度**:O(n),只遍历一次价格数组。 - **空间复杂度**:O(1),只使用了几个变量。 --- ## ✅ 与其他解法对比 | 方法 | 时间复杂度 | 空间复杂度 | 是否推荐 | |------|------------|------------|----------| | 暴力枚举(双重循环) | O() | O(1) | ❌ 不推荐 | | 贪心算法(本解法) | O(n) | O(1) | ✅ 强烈推荐 | | 动态规划 | O(n) | O(n) | ✅ 可选 | --- ## 💡 拓展:动态规划版本(可选) ```cpp int maxProfit(vector<int>& prices) { int n = prices.size(); vector<int> dp(n, 0); // dp[i] 表示第 i 天为止的最大利润 int min_price = prices[0]; for (int i = 1; i < n; ++i) { dp[i] = max(dp[i - 1], prices[i] - min_price); min_price = min(min_price, prices[i]); } return dp[n - 1]; } ``` --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值