Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST.
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than or equal to the node's key.
The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
Both the left and right subtrees must also be binary search trees.
For example:
Given BST [1,null,2,2],
1
\
2
/
2
return [2].
Note: If a tree has more than one mode, you can return them in any order.
Follow up: Could you do that without using any extra space? (Assume that the implicit stack space incurred due to recursion does not count).
最开始题目意思理解错了
这里要注意的是,如果有根的右子树中有与根值相同的节点,第一个这样的点不是直接连在根上,而是出现在子树的最左边。
由于是二叉搜索树,所以采用中序遍历得到的序列是从小到大的顺序。这样遍历到一个点时候,记录上一个点的值,来确定计数器的状态。从而更新结果list
public class Solution {
int max = 0;
Integer pre = null;
int count = 1;
public int[] findMode(TreeNode root) {
if(root==null) return new int[0];
ArrayList<Integer> resList = new ArrayList<>();
sumChild(root, resList);
int[] res = new int[resList.size()];
for(int i=0; i< resList.size(); i++){
res[i] = resList.get(i);
}
return res;
}
void sumChild(TreeNode root, ArrayList<Integer> list){
if(root==null) return ;
sumChild(root.left, list);
if(pre!=null){
if(root.val==pre){
count++;
}else{
count = 1;
}
}
if(count > max){
list.clear();
list.add(root.val);
max = count;
}else if(count==max){
list.add(root.val);
}
pre = root.val;
sumChild(root.right, list);
}
}