消息中间件之Kafka(二)

1.Kafka线上常见问题

1.1 为什么要对topic下数据进行分区存储?

  • 1.commit log文件会受到所在机器的文件系统大小的限制,分区之后可以将不同的分区放在不同的机器上,
    相当于对数据做了分布式存储,理论上一个topic可以处理任意数量的数据
  • 2.提高并行度

1.2 如何在多个partition中保证顺序消费?

  • 方案一:首先将需要保证顺序的消息收集起来,然后交给一个consumer去进行处理,然后内部维护一个线程池,让其中某一个线程去顺序执行这些消息eg:用户下单流程,支付成功消息 -> 库存消息
  • 方案二:让多个消息构造一个特殊结构的顺序消息,当consumer收到时,在一个线程中依次进行消费

1.3 消息丢失

在这里插入图片描述
以上4个步骤都有可能会造成消息丢失
Producer

  • acks=0,表示producer不需要等待任何broker确认收到消息的回复,就可以发送下一条消息,性能最高,但是最容易丢消息,大数据统计报表场景,对性能要求很高,对数据丢失不敏感的情况可以用这种
  • acks=1,表示至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入,就可以继续发送,下一条消息,这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失
  • ack=-1或者all,这意味着leader需要等待所有备份(min.insync.replicas配置的备份个数)都成功写入日志,
    这种策略会保证只要由一个备份存活就不会丢失数据,这是最强的数据保证,一般除非是金融级别,或跟钱打交道的场景才会使用这种配置,当然如果min.insync.replicas配置的是1则也可能丢消息,跟acks=1情况类似

Consumer

  • 如果消费这边配置的是自动提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

coffee_babe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值