folder=datasets.ImageFolder(root='c:/train/fruit',transform=transform)
n=len(folder)
n1=int(n*0.8)
n2=n-n1
trans,test = random_split(foler,[n1,n2])
(3)
loss.backward()
optimizer.zero_grad()
optimizer.step()
_,predicted = torch.max(outputs.data,1)
total+= labels.size(0)
correct += (predicted == labels).sum().item()
running_loss += loss.item()
running_loss =0.0
correct = 0
total = 0
torch.save(model.state_dict(),'2-2model_test.pth')