Spring AI 源码核心分析

「鸿蒙心迹」“2025・领航者闯关记“主题征文活动 10w+人浏览 601人参与

Spring AI 源码深度分析

先接地气 了解下
在这里插入图片描述

🎯 一、Spring AI 源码架构概览

1. 源码仓库结构

spring-ai/
├── spring-ai-core/                    # 核心模块
│   ├── src/main/java/org/springframework/ai/
│   │   ├── client/                    # 客户端接口
│   │   ├── model/                     # 模型定义
│   │   ├── prompt/                    # 提示词
│   │   ├── vectorstore/               # 向量存储
│   │   └── util/                      # 工具类
├── spring-ai-openai/                  # OpenAI 适配器
├── spring-ai-azure-openai/           # Azure OpenAI 适配器
├── spring-ai-transformers/           # 本地模型
├── spring-ai-huggingface/            # Hugging Face
├── spring-ai-bom/                    # 依赖管理
└── spring-ai-test/                   # 测试支持

2. 核心类图关系

«interface»

ChatClient

+ChatResponse call(Prompt prompt)

+Flux stream(Prompt prompt)

«interface»

EmbeddingClient

+EmbeddingResponse call(EmbeddingRequest request)

«interface»

VectorStore

+add(List documents)

+similaritySearch(SearchRequest request)

«abstract»

AbstractAiClient

#RestTemplate restTemplate

#AiClientProperties properties

+ChatResponse doChat(ChatRequest request)

#abstract Object toProviderRequest(ChatRequest request)

#abstract ChatResponse toChatResponse(Object response)

OpenAiChatClient

-String apiKey

-String baseUrl

+ChatResponse chat(ChatRequest request)

ChatResponse

-String id

-String model

-List<Choice> choices

-Usage usage

+getContent() : String

🔧 二、核心流程源码分析

1. 自动配置机制

1.1 自动配置类
// spring-ai-openai/src/main/java/org/springframework/ai/openai/autoconfigure/OpenAiAutoConfiguration.java
@Configuration(proxyBeanMethods = false)
@ConditionalOnClass(OpenAiApi.class)
@EnableConfigurationProperties(OpenAiProperties.class)
@Import({ OpenAiConnectionDetails.class, OpenAiRestClientConfiguration.class })
public class OpenAiAutoConfiguration {

    @Bean
    @ConditionalOnMissingBean
    public OpenAiChatClient openAiChatClient(
            OpenAiConnectionDetails connectionDetails,
            OpenAiProperties openAiProperties,
            List<RequestResponsePostProcessor> postProcessors,
            RestClient.Builder restClientBuilder) {
        
        // 创建 OpenAiApi
        OpenAiApi openAiApi = new OpenAiApi(
            connectionDetails.getBaseUrl(),
            openAiProperties.getApiKey(),
            restClientBuilder
        );
        
        // 创建 ChatClient
        OpenAiChatClient openAiChatClient = new OpenAiChatClient(
            openAiApi,
            openAiProperties.getOptions(),
            postProcessors
        );
        
        // 配置重试机制
        if (openAiProperties.getRetry() != null) {
            openAiChatClient.setRetryTemplate(createRetryTemplate(openAiProperties.getRetry()));
        }
        
        return openAiChatClient;
    }
    
    @Bean
    @ConditionalOnMissingBean
    public OpenAiEmbeddingClient openAiEmbeddingClient(
            OpenAiConnectionDetails connectionDetails,
            OpenAiProperties openAiProperties,
            RestClient.Builder restClientBuilder) {
        
        OpenAiApi openAiApi = new OpenAiApi(
            connectionDetails.getBaseUrl(),
            openAiProperties.getApiKey(),
            restClientBuilder
        );
        
        return new OpenAiEmbeddingClient(openAiApi, openAiProperties.getEmbedding().getOptions());
    }
}
1.2 属性配置类
// spring-ai-openai/src/main/java/org/springframework/ai/openai/autoconfigure/OpenAiProperties.java
@ConfigurationProperties(prefix = OpenAiProperties.CONFIG_PREFIX)
public class OpenAiProperties {

    public static final String CONFIG_PREFIX = "spring.ai.openai";
    
    private String baseUrl = "https://api.openai.com/v1";
    private String apiKey;
    
    private ChatOptions chat = new ChatOptions();
    private EmbeddingOptions embedding = new EmbeddingOptions();
    private ImageOptions image = new ImageOptions();
    
    @DurationUnit(ChronoUnit.SECONDS)
    private Duration timeout = Duration.ofSeconds(60);
    
    private RetryOptions retry;
    
    @Data
    public static class ChatOptions {
        private String model = "gpt-3.5-turbo";
        private Double temperature = 0.7;
        private Double topP = 1.0;
        private Integer maxTokens = null;
        private List<String> stop = null;
        private Double presencePenalty = 0.0;
        private Double frequencyPenalty = 0.0;
    }
}

2. 核心接口设计

2.1 ChatClient 接口
// spring-ai-core/src/main/java/org/springframework/ai/client/ChatClient.java
public interface ChatClient {
    
    /**
     * 同步调用聊天接口
     */
    default String call(String message) {
        Prompt prompt = new Prompt(new UserMessage(message));
        ChatResponse response = call(prompt);
        return response.getResult().getOutput().getContent();
    }
    
    /**
     * 核心聊天方法
     */
    ChatResponse call(Prompt prompt);
    
    /**
     * 流式聊天
     */
    default Flux<ChatResponse> stream(Prompt prompt) {
        throw new UnsupportedOperationException("Streaming not supported");
    }
    
    /**
     * 带选项的聊天
     */
    default ChatResponse call(ChatOptions options) {
        Prompt prompt = new Prompt(new UserMessage(""), options);
        return call(prompt);
    }
}
2.2 EmbeddingClient 接口
// spring-ai-core/src/main/java/org/springframework/ai/embedding/EmbeddingClient.java
public interface EmbeddingClient {
    
    /**
     * 单文本向量化
     */
    default List<Double> embed(String text) {
        EmbeddingResponse response = call(new EmbeddingRequest(List.of(text), null));
        return response.getResults().get(0).getOutput();
    }
    
    /**
     * 批量向量化
     */
    default List<List<Double>> embed(List<String> texts) {
        EmbeddingResponse response = call(new EmbeddingRequest(texts, null));
        return response.getResults().stream()
            .map(Embedding::getOutput)
            .collect(Collectors.toList());
    }
    
    /**
     * 核心向量化方法
     */
    EmbeddingResponse call(EmbeddingRequest request);
    
    /**
     * 获取向量维度
     */
    default int dimensions() {
        return embed("test").size();
    }
}

3. OpenAI 适配器实现

3.1 OpenAiChatClient 实现
// spring-ai-openai/src/main/java/org/springframework/ai/openai/client/OpenAiChatClient.java
public class OpenAiChatClient implements ChatClient, ChatOptionsCapable, Retryable {
    
    private final OpenAiApi openAiApi;
    private final OpenAiChatOptions defaultOptions;
    private final List<RequestResponsePostProcessor> postProcessors;
    private RetryTemplate retryTemplate = new RetryTemplate();
    
    public OpenAiChatClient(OpenAiApi openAiApi, 
                           OpenAiChatOptions options,
                           List<RequestResponsePostProcessor> postProcessors) {
        this.openAiApi = openAiApi;
        this.defaultOptions = options;
        this.postProcessors = postProcessors != null ? postProcessors : List.of();
    }
    
    @Override
    public ChatResponse call(Prompt prompt) {
        return retryTemplate.execute(context -> {
            // 1. 构建请求
            ChatCompletionRequest request = createRequest(prompt);
            
            // 2. 执行请求
            ChatCompletion completion = openAiApi.chatCompletion(request);
            
            // 3. 构建响应
            ChatResponse response = convertCompletionToResponse(completion, prompt);
            
            // 4. 后处理
            return postProcessResponse(response, prompt);
        });
    }
    
    @Override
    public Flux<ChatResponse> stream(Prompt prompt) {
        return Flux.create(sink -> {
            try {
                // 1. 构建流式请求
                ChatCompletionRequest request = createRequest(prompt);
                request.setStream(true);
                
                // 2. 执行流式请求
                Flux<ChatCompletionChunk> flux = openAiApi.chatCompletionStream(request);
                
                // 3. 处理流式响应
                flux.subscribe(
                    chunk -> {
                        ChatResponse response = convertChunkToResponse(chunk, prompt);
                        sink.next(response);
                    },
                    sink::error,
                    sink::complete
                );
            } catch (Exception e) {
                sink.error(e);
            }
        });
    }
    
    private ChatCompletionRequest createRequest(Prompt prompt) {
        // 合并默认选项和提示词选项
        OpenAiChatOptions mergedOptions = mergeOptions(prompt);
        
        // 转换消息格式
        List<ChatCompletionMessage> messages = convertMessages(prompt.getMessages());
        
        return ChatCompletionRequest.builder()
            .model(mergedOptions.getModel())
            .messages(messages)
            .temperature(mergedOptions.getTemperature())
            .topP(mergedOptions.getTopP())
            .maxTokens(mergedOptions.getMaxTokens())
            .stop(mergedOptions.getStop())
            .presencePenalty(mergedOptions.getPresencePenalty())
            .frequencyPenalty(mergedOptions.getFrequencyPenalty())
            .build();
    }
    
    private ChatResponse convertCompletionToResponse(ChatCompletion completion, Prompt prompt) {
        List<Generation> generations = completion.getChoices().stream()
            .map(choice -> new Generation(choice.getMessage().getContent(), extractMetadata(choice)))
            .collect(Collectors.toList());
        
        Map<String, Object> metadata = new HashMap<>();
        metadata.put("id", completion.getId());
        metadata.put("model", completion.getModel());
        metadata.put("created", completion.getCreated());
        
        if (completion.getUsage() != null) {
            metadata.put("usage", completion.getUsage());
        }
        
        return new ChatResponse(generations, metadata);
    }
    
    private ChatResponse postProcessResponse(ChatResponse response, Prompt prompt) {
        ChatResponse processed = response;
        for (RequestResponsePostProcessor processor : postProcessors) {
            processed = processor.postProcess(processed, prompt);
        }
        return processed;
    }
}
3.2 OpenAiApi HTTP 客户端
// spring-ai-openai/src/main/java/org/springframework/ai/openai/api/OpenAiApi.java
public class OpenAiApi {
    
    private final RestClient restClient;
    private final String baseUrl;
    
    public OpenAiApi(String baseUrl, String apiKey, RestClient.Builder restClientBuilder) {
        this.baseUrl = baseUrl;
        
        this.restClient = restClientBuilder
            .baseUrl(baseUrl)
            .defaultHeader("Authorization", "Bearer " + apiKey)
            .defaultHeader("Content-Type", "application/json")
            .requestInterceptor(new RetryRequestInterceptor())
            .build();
    }
    
    public ChatCompletion chatCompletion(ChatCompletionRequest request) {
        return restClient.post()
            .uri("/chat/completions")
            .body(request)
            .retrieve()
            .onStatus(status -> status.is4xxClientError() || status.is5xxServerError(),
                (req, res) -> handleError(req, res, request))
            .body(ChatCompletion.class);
    }
    
    public Flux<ChatCompletionChunk> chatCompletionStream(ChatCompletionRequest request) {
        return restClient.post()
            .uri("/chat/completions")
            .body(request)
            .retrieve()
            .body(FluxTokenExtractor.class)
            .flatMap(this::parseChunk);
    }
    
    private Mono<ChatCompletionChunk> parseChunk(String chunk) {
        if (chunk.startsWith("data: ")) {
            String data = chunk.substring(6);
            if ("[DONE]".equals(data)) {
                return Mono.empty();
            }
            try {
                ChatCompletionChunk completion = objectMapper.readValue(data, ChatCompletionChunk.class);
                return Mono.just(completion);
            } catch (JsonProcessingException e) {
                return Mono.error(e);
            }
        }
        return Mono.empty();
    }
    
    private void handleError(ClientHttpRequest request, 
                            ClientHttpResponse response, 
                            ChatCompletionRequest originalRequest) {
        // 解析错误响应
        try {
            String body = new String(response.getBody().readAllBytes(), StandardCharsets.UTF_8);
            OpenAiError error = objectMapper.readValue(body, OpenAiError.class);
            throw new OpenAiHttpException(error, response.getStatusCode());
        } catch (IOException e) {
            throw new RuntimeException("Failed to parse error response", e);
        }
    }
}

4. 请求/响应模型

4.1 请求模型
// spring-ai-openai/src/main/java/org/springframework/ai/openai/api/ChatCompletionRequest.java
public class ChatCompletionRequest {
    
    private String model;
    private List<ChatCompletionMessage> messages;
    private Double temperature;
    private Double topP;
    private Integer n = 1;
    private Boolean stream = false;
    private List<String> stop;
    private Integer maxTokens;
    private Double presencePenalty = 0.0;
    private Double frequencyPenalty = 0.0;
    private Map<String, Integer> logitBias;
    private String user;
    
    @Data
    @Builder
    public static class ChatCompletionMessage {
        private String role;  // "system", "user", "assistant"
        private String content;
        private String name;
        private List<ToolCall> toolCalls;
    }
}
4.2 响应模型
// spring-ai-openai/src/main/java/org/springframework/ai/openai/api/ChatCompletion.java
public class ChatCompletion {
    
    private String id;
    private String object = "chat.completion";
    private Long created;
    private String model;
    private List<Choice> choices;
    private Usage usage;
    
    @Data
    public static class Choice {
        private Integer index;
        private ChatCompletionMessage message;
        private String finishReason;
        private Double logprobs;
    }
    
    @Data
    public static class Usage {
        private Integer promptTokens;
        private Integer completionTokens;
        private Integer totalTokens;
    }
}

5. 核心调用流程

// 核心调用流程模拟
public class ChatClientInvocationProcess {
    
    public ChatResponse invokeChat(ChatClient chatClient, String userMessage) {
        // 1. 创建提示词
        Prompt prompt = new Prompt(new UserMessage(userMessage));
        
        // 2. 调用 ChatClient
        ChatResponse response = chatClient.call(prompt);
        
        // 3. 处理响应
        return processResponse(response);
    }
    
    private ChatResponse processResponse(ChatResponse response) {
        // 提取生成内容
        String content = response.getResult().getOutput().getContent();
        
        // 提取元数据
        Map<String, Object> metadata = response.getMetadata();
        
        // 处理 Token 使用
        Usage usage = (Usage) metadata.get("usage");
        if (usage != null) {
            log.info("Token usage - Prompt: {}, Completion: {}, Total: {}",
                usage.getPromptTokens(),
                usage.getCompletionTokens(),
                usage.getTotalTokens());
        }
        
        return response;
    }
}

6. 向量存储实现

6.1 VectorStore 接口
// spring-ai-core/src/main/java/org/springframework/ai/vectorstore/VectorStore.java
public interface VectorStore {
    
    /**
     * 添加文档
     */
    void add(List<Document> documents);
    
    /**
     * 相似度搜索
     */
    List<Document> similaritySearch(SearchRequest request);
    
    /**
     * 混合搜索
     */
    default List<Document> similaritySearch(String query) {
        return similaritySearch(SearchRequest.query(query));
    }
    
    /**
     * 带过滤的搜索
     */
    default List<Document> similaritySearch(SearchRequest request, 
                                           MetadataFilter filter) {
        SearchRequest filteredRequest = SearchRequest.from(request)
            .withFilterExpression(filter.getExpression())
            .build();
        return similaritySearch(filteredRequest);
    }
    
    /**
     * 删除文档
     */
    default Optional<Boolean> delete(List<String> idList) {
        return Optional.empty();
    }
}
6.2 SimpleVectorStore 实现
// spring-ai-core/src/main/java/org/springframework/ai/vectorstore/SimpleVectorStore.java
public class SimpleVectorStore implements VectorStore {
    
    private final EmbeddingClient embeddingClient;
    private final Map<String, EmbeddingDocument> store = new ConcurrentHashMap<>();
    private final RandomAccessSearcher searcher = new RandomAccessSearcher();
    
    public SimpleVectorStore(EmbeddingClient embeddingClient) {
        this.embeddingClient = embeddingClient;
    }
    
    @Override
    public void add(List<Document> documents) {
        // 1. 向量化文档
        List<String> texts = documents.stream()
            .map(Document::getContent)
            .collect(Collectors.toList());
        
        List<Embedding> embeddings = embeddingClient.embed(texts);
        
        // 2. 存储文档和向量
        for (int i = 0; i < documents.size(); i++) {
            Document doc = documents.get(i);
            Embedding embedding = embeddings.get(i);
            
            EmbeddingDocument embeddingDoc = new EmbeddingDocument(doc.getId(), 
                doc.getContent(), 
                embedding, 
                doc.getMetadata());
            
            store.put(doc.getId(), embeddingDoc);
            searcher.add(embeddingDoc);
        }
    }
    
    @Override
    public List<Document> similaritySearch(SearchRequest request) {
        // 1. 向量化查询
        Embedding queryEmbedding = embeddingClient.embed(request.getQuery());
        
        // 2. 搜索相似文档
        List<SearchResult> results = searcher.search(queryEmbedding, 
            request.getTopK(), 
            request.getSimilarityThreshold());
        
        // 3. 转换为 Document
        return results.stream()
            .map(result -> {
                EmbeddingDocument embeddingDoc = store.get(result.getId());
                return Document.builder()
                    .id(embeddingDoc.getId())
                    .content(embeddingDoc.getContent())
                    .metadata(embeddingDoc.getMetadata())
                    .score(result.getScore())
                    .build();
            })
            .collect(Collectors.toList());
    }
}

7. 后处理器机制

// spring-ai-core/src/main/java/org/springframework/ai/client/RequestResponsePostProcessor.java
public interface RequestResponsePostProcessor {
    
    /**
     * 请求预处理
     */
    default Prompt preProcess(Prompt prompt) {
        return prompt;
    }
    
    /**
     * 响应后处理
     */
    default ChatResponse postProcess(ChatResponse response, Prompt prompt) {
        return response;
    }
}

// 实现示例:日志后处理器
@Component
public class LoggingPostProcessor implements RequestResponsePostProcessor {
    
    private static final Logger log = LoggerFactory.getLogger(LoggingPostProcessor.class);
    
    @Override
    public Prompt preProcess(Prompt prompt) {
        log.debug("Pre-processing prompt: {}", prompt.getContents());
        return prompt;
    }
    
    @Override
    public ChatResponse postProcess(ChatResponse response, Prompt prompt) {
        log.debug("Post-processing response. Tokens used: {}", 
            response.getMetadata().get("usage"));
        return response;
    }
}

8. 重试机制实现

// spring-ai-core/src/main/java/org/springframework/ai/retry/Retryable.java
public interface Retryable {
    
    void setRetryTemplate(RetryTemplate retryTemplate);
    
    RetryTemplate getRetryTemplate();
}

// 默认重试配置
public class DefaultRetryConfig {
    
    public static RetryTemplate createDefaultRetryTemplate() {
        RetryTemplate retryTemplate = new RetryTemplate();
        
        // 重试策略:最多3次,排除某些异常
        SimpleRetryPolicy retryPolicy = new SimpleRetryPolicy(3,
            Collections.singletonMap(TransientDataAccessException.class, true),
            false);
        
        // 退避策略:初始等待1秒,倍数2
        ExponentialBackOffPolicy backOffPolicy = new ExponentialBackOffPolicy();
        backOffPolicy.setInitialInterval(1000);
        backOffPolicy.setMultiplier(2.0);
        backOffPolicy.setMaxInterval(10000);
        
        retryTemplate.setRetryPolicy(retryPolicy);
        retryTemplate.setBackOffPolicy(backOffPolicy);
        
        return retryTemplate;
    }
}

🔄 三、核心流程时序图

OpenAI服务RestClientOpenAiApi后处理器链重试模板OpenAiChatClientChatClient接口用户代码OpenAI服务RestClientOpenAiApi后处理器链重试模板OpenAiChatClientChatClient接口用户代码异常处理流程alt[需要重试][达到最大重试次数]alt[可重试异常(如网络超时)]call(prompt)chat(prompt)execute(callable)调用实际方法preProcess(prompt)处理后的promptcreateRequest(prompt)ChatCompletionRequestchatCompletion(request)POST /chat/completionsHTTP请求HTTP响应ChatCompletionChatCompletionconvertCompletionToResponse()ChatResponsepostProcess(response, prompt)处理后的responseChatResponseChatResponseChatResponseChatResponse抛出异常传递异常抛出异常捕获异常判断是否重试等待退避时间重试调用抛出最终异常Spring AI 核心调用流程时序图

📊 四、关键设计模式分析

1. 模板方法模式

// 抽象模板类定义标准流程
public abstract class AbstractAiClient {
    
    public final ChatResponse chat(ChatRequest request) {
        // 1. 预处理
        preProcess(request);
        
        // 2. 构建请求(由子类实现)
        Object providerRequest = toProviderRequest(request);
        
        // 3. 执行请求
        Object rawResponse = executeRequest(providerRequest);
        
        // 4. 转换响应(由子类实现)
        ChatResponse response = toChatResponse(rawResponse);
        
        // 5. 后处理
        return postProcess(response, request);
    }
    
    protected abstract Object toProviderRequest(ChatRequest request);
    protected abstract ChatResponse toChatResponse(Object response);
    
    // 钩子方法
    protected void preProcess(ChatRequest request) {}
    protected ChatResponse postProcess(ChatResponse response, ChatRequest request) {
        return response;
    }
}

2. 策略模式

// 策略接口
public interface AiProviderStrategy {
    String getProviderName();
    ChatResponse chat(ChatRequest request);
    boolean supports(String model);
}

// 具体策略
@Component
@ConditionalOnProperty(name = "spring.ai.openai.enabled", havingValue = "true")
public class OpenAiStrategy implements AiProviderStrategy {
    
    @Override
    public String getProviderName() {
        return "openai";
    }
    
    @Override
    public ChatResponse chat(ChatRequest request) {
        // OpenAI 特定的实现
        return null;
    }
}

3. 工厂模式

@Component
public class AiClientFactory {
    
    private final Map<String, AiProviderStrategy> strategies;
    
    public AiClientFactory(List<AiProviderStrategy> strategyList) {
        this.strategies = strategyList.stream()
            .collect(Collectors.toMap(
                AiProviderStrategy::getProviderName,
                Function.identity()
            ));
    }
    
    public AiClient createClient(String provider, String model) {
        AiProviderStrategy strategy = strategies.get(provider);
        if (strategy == null) {
            throw new IllegalArgumentException("Unsupported provider: " + provider);
        }
        
        return new AiClientAdapter(strategy, model);
    }
}

🎯 五、性能优化实现

1. 连接池管理

@Configuration
public class ConnectionPoolConfig {
    
    @Bean
    public RestClient.Builder aiRestClientBuilder() {
        HttpClientConnectionManager connectionManager = new PoolingHttpClientConnectionManager();
        ((PoolingHttpClientConnectionManager) connectionManager)
            .setMaxTotal(100);
        ((PoolingHttpClientConnectionManager) connectionManager)
            .setDefaultMaxPerRoute(20);
        
        HttpClient httpClient = HttpClients.custom()
            .setConnectionManager(connectionManager)
            .setKeepAliveStrategy((response, context) -> 30 * 1000)
            .build();
        
        return RestClient.builder()
            .requestFactory(new HttpComponentsClientHttpRequestFactory(httpClient));
    }
}

2. 响应缓存

@Component
@CacheConfig(cacheNames = "aiResponses")
public class CachingAiClient implements ChatClient {
    
    private final ChatClient delegate;
    
    public CachingAiClient(ChatClient delegate) {
        this.delegate = delegate;
    }
    
    @Override
    @Cacheable(key = "#prompt.hashCode()", unless = "#result == null")
    public ChatResponse call(Prompt prompt) {
        return delegate.call(prompt);
    }
    
    @CacheEvict(allEntries = true)
    public void clearCache() {
        // 清理缓存
    }
}

🔍 六、调试和监控

1. 日志配置

logging:
  level:
    org.springframework.ai: DEBUG
    org.springframework.ai.openai: INFO
    org.apache.http: WARN

2. 监控端点

@RestControllerEndpoint(id = "ai")
public class AiMetricsEndpoint {
    
    private final MeterRegistry meterRegistry;
    
    public AiMetricsEndpoint(MeterRegistry meterRegistry) {
        this.meterRegistry = meterRegistry;
    }
    
    @ReadOperation
    public Map<String, Object> metrics() {
        Map<String, Object> metrics = new HashMap<>();
        
        // 收集所有 AI 相关的指标
        meterRegistry.find("ai.client.requests").meters()
            .forEach(meter -> {
                metrics.put(meter.getId().getName(), meter.measure());
            });
        
        return metrics;
    }
}

📈 七、源码学习建议

1. 学习路径

  1. 从接口开始:先理解 ChatClientEmbeddingClient 等核心接口
  2. 查看自动配置:学习 OpenAiAutoConfiguration 等配置类
  3. 跟踪实现:选择一个具体实现(如 OpenAiChatClient)深入理解
  4. 研究设计模式:注意模板方法、策略、工厂等模式的应用
  5. 调试运行:实际运行示例代码,打断点跟踪执行流程

2. 关键调试技巧

// 启用详细日志
@SpringBootApplication
@Slf4j
public class Application {
    public static void main(String[] args) {
        SpringApplication.run(Application.class, args);
    }
    
    @Bean
    public RequestResponsePostProcessor debugProcessor() {
        return new RequestResponsePostProcessor() {
            @Override
            public Prompt preProcess(Prompt prompt) {
                log.debug(">>> Request: {}", prompt.getContents());
                return prompt;
            }
            
            @Override
            public ChatResponse postProcess(ChatResponse response, Prompt prompt) {
                log.debug("<<< Response: {}", response.getResult().getOutput().getContent());
                return response;
            }
        };
    }
}

这个源码分析涵盖了 Spring AI 的核心架构、关键实现和设计思想。通过理解这些代码,您可以更深入地掌握 Spring AI 的工作原理,并在实际开发中更好地使用和扩展它。

### Spring AI 源码地址 Spring AI源码可以通过 GitHub 进行访问。根据已知的信息,`spring-ai-alibaba-starter` 是阿里巴巴云提供的一个 Starter 依赖[^2],这表明其源码可能托管于 Alibaba Cloud 或者 Apache License 下的相关仓库。 以下是 `spring-ai-alibaba-starter` 可能的 GitHub 地址: #### 官方仓库推测 1. **Alibaba Cloud GitHub**: 鉴于该依赖由阿里巴巴提供,可以尝试访问阿里巴巴开源项目的官方 GitHub 页面: ```plaintext https://github.com/alibaba/spring-ai-alibaba-starter ``` 2. **Spring Extension for Alibaba Cloud**: 如果该项目属于 Spring 生态系统的扩展模块,则可能会被托管在以下位置: ```plaintext https://github.com/alibaba/spring-cloud-alibaba/tree/main/modules/spring-ai-alibaba-starter ``` 3. **Spring Framework Extensions**: 若此项目作为 Spring 社区的一部分存在,也可以通过 Spring 官方扩展库找到相关资源: ```plaintext https://github.com/spring-projects-experimental/ ``` --- ### 如何验证源码地址? 为了确认具体的源码地址,建议执行以下操作: 1. 访问 Maven Central Repository 并查询 `spring-ai-alibaba-starter` 的元数据信息: ```plaintext https://search.maven.org/artifact/com.alibaba.cloud.ai/spring-ai-alibaba-starter/1.0.0-M2/jar ``` 此页面通常会包含指向源码的链接或 SCM(Source Code Management)信息。 2. 使用 GitHub 搜索功能定位关键词 `spring-ai-alibaba-starter`,并筛选来自可信组织(如 alibaba 或 spring-projects)的结果。 3. 查阅官方文档或博客文章,了解是否有明确提到的源码托管平台。 --- ### 示例代码片段:解析依赖关系 如果需要进一步分析依赖结构,可通过以下方式加载和调试源码: ```java // 添加 Maven 依赖到 pom.xml 文件中 <dependency> <groupId>com.alibaba.cloud.ai</groupId> <artifactId>spring-ai-alibaba-starter</artifactId> <version>1.0.0-M2</version> </dependency> // 加载 BeanOutputConverter 类型实例 @Bean public BeanOutputConverter beanOutputConverter(ObjectMapper objectMapper) { return new BeanOutputConverter(objectMapper); } ``` 上述代码展示了如何基于 `ObjectMapper` 创建自定义转换器[^3],这对于理解 Spring AI 的内部机制有一定帮助。 --- ### 工具支持 对于开发者而言,Visual Studio Code 插件提供了强大的功能来辅助开发工作流。例如,在 VS Code 更新日志中提及的功能可以帮助用户更高效地管理测试覆盖率[^4]。因此,推荐安装最新版本的插件以获得最佳体验。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coder_Boy_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值