SVM基本应用:
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 'sepal length', 'sepal width', 'petal length', 'petal width'
iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度'
if __name__ == "__main__":
path = '..\\8.Regression\\iris.data' # 数据文件路径
data = pd.read_csv(path, header=None)
x, y = data[range(4)], data[4]
y = pd.Categorical(y).codes
x = x[[0, 1]]
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6)
# 分类器
clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr')
# clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr')
clf.fit(x_train, y_train.ravel())
# 准确率
print clf.score(x_train, y_train) # 精度
print '训练集准确率:', accuracy_score(y_train, clf.predict(x_train))
print clf.score(x_test, y_test)
print '测试集准确率:', accuracy_score(y_test, clf.predict(x_test))
# decision_function
print 'decision_function:\n', clf.decision_function(x_train)
print '\npredict:\n', clf.predict(x_train)
# 画图
x1_min, x2_min = x.min()
x1_max, x2_max = x.max()
x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j] # 生成网格采样点
grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点
# print 'grid_test = \n', grid_test
# Z = clf.decision_function(grid_test) # 样本到决策面的距离
# print Z
grid_hat = clf.predict(grid_test) # 预测分类值
grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
plt.figure(facecolor='w')
plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本
plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中测试集样本
plt.xlabel(iris_feature[0], fontsize=13)
plt.ylabel(iris_feature[1], fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'鸢尾花SVM二特征分类', fontsize=16)
plt.grid(b=True, ls=':')
plt.tight_layout(pad=1.5)
plt.show()
SVM_draw:
import numpy as np
from sklearn import svm
import matplotlib as mpl
import matplotlib.colors
import matplotlib.pyplot as plt
def show_accuracy(a, b):
acc = a.ravel() == b.ravel()
# print '正确率:%.2f%%' % (100*float(acc.sum()) / a.size)
if __name__ == "__main__":
data = np.loadtxt('bipartition.txt', dtype=np.float, delimiter='\t')
x, y = np.split(data, (2, ), axis=1)
y = y.ravel()
# 分类器
clf_param = (('linear', 0.1), ('linear', 0.5), ('linear', 1), ('linear', 2),
('rbf', 1, 0.1), ('rbf', 1, 1), ('rbf', 1, 10), ('rbf', 1, 100),
('rbf', 5, 0.1), ('rbf', 5, 1), ('rbf', 5, 10), ('rbf', 5, 100))
x1_min, x1_max = x[:, 0].min(), x[:, 0].max() # 第0列的范围
x2_min, x2_max = x[:, 1].min(), x[:, 1].max() # 第1列的范围
x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j] # 生成网格采样点
grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点
cm_light = mpl.colors.ListedColormap(['#77E0A0', '#FFA0A0'])
cm_dark = mpl.colors.ListedColormap(['g', 'r'])
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
plt.figure(figsize=(14, 10), facecolor='w')
for i, param in enumerate(clf_param):
clf = svm.SVC(C=param[1], kernel=param[0])
if param[0] == 'rbf':
clf.gamma = param[2]
title = u'高斯核,C=%.1f,$\gamma$ =%.1f' % (param[1], param[2])
else:
title = u'线性核,C=%.1f' % param[1]
clf.fit(x, y)
y_hat = clf.predict(x)
show_accuracy(y_hat, y) # 准确率
# 画图
print title
print '支撑向量的数目:', clf.n_support_
print '支撑向量的系数:', clf.dual_coef_
print '支撑向量:', clf.support_
plt.subplot(3, 4, i+1)
grid_hat = clf.predict(grid_test) # 预测分类值
grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同
plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light, alpha=0.8)
plt.scatter(x[:, 0], x[:, 1], c=y, edgecolors='k', s=40, cmap=cm_dark) # 样本的显示
plt.scatter(x[clf.support_, 0], x[clf.support_, 1], edgecolors='k', facecolors='none', s=100, marker='o') # 支撑向量
z = clf.decision_function(grid_test)
# print 'z = \n', z
print 'clf.decision_function(x) = ', clf.decision_function(x)
print 'clf.predict(x) = ', clf.predict(x)
z = z.reshape(x1.shape)
plt.contour(x1, x2, z, colors=list('kbrbk'), linestyles=['--', '--', '-', '--', '--'],
linewidths=[1, 0.5, 1.5, 0.5, 1], levels=[-1, -0.5, 0, 0.5, 1])
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(title, fontsize=14)
plt.suptitle(u'SVM不同参数的分类', fontsize=20)
plt.tight_layout(1.4)
plt.subplots_adjust(top=0.92)
plt.savefig('1.png')
plt.show()
本文通过使用支持向量机(SVM)对鸢尾花数据集进行分类,展示了如何利用Python的scikit-learn库进行数据预处理、模型训练及评估。通过调整SVM的不同参数,如核函数、C值等,观察其对分类效果的影响。
1130

被折叠的 条评论
为什么被折叠?



