小白都懂的tf.Variable、tf.get_variable、tf.variable_scope

tf.Variable与tf.get_variable
tensorflow通过变量名称来创建或者获取一个变量的机制,通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递。 TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的。
当然,变量也可以通过tf.Varivale来创建。当tf.get_variable用于变量创建时,和tf.Variable的功能基本等价。

#以下两个定义是等价的
v = tf.get_variable('v', shape=[1], initializer=tf.constant_initializer(1.0))
v = tf.Variable(tf.constant(1.0, shape=[1], name='v')

tf.get_varialbe和tf.Variable最大的区别在于:tf.Variable的变量名是一个可选项,通过name=’v’的形式给出。但是tf.get_variable必须指定变量名

tf.get_variable与tf.variable_scope

使用get_variable()函数来创建共享变量,如果它还不存在,或者如果已经存在,则复用它。 所需的行为(创建或复用)由当前variable_scope()的属性控制。复用大体意思就是 之前如果你创建的变量和后面重复了 那么你就得用前面的变量来实现权值共享

例如:
以下代码将创建一个名为relu/threshold的变量(作为标量,因为shape = (),并使用 0.0 作为初始值):

with tf.variable_scope("relu"):
    threshold = tf.get_variable("threshold", shape=(),
                                initializer=tf.constant_initializer(0.0))

注意,如果变量已经通过较早的get_variable()调用创建,则此代码将引发异常。 这种行为可以防止错误地复用变量。如果要复用变量,则需要通过将变量scope的复用属性设置为True来明确说明(在这种情况下,您不必指定形状或初始值):

with tf.variable_scope("relu", reuse=True):
    threshold = tf.get_variable("threshold")

该代码将获取现有的relu/threshold变量,如果不存在会引发异常(如果没有使用get_variable()创建)。 或者,您可以通过调用scope的reuse_variables()方法将复用属性设置为true:

with tf.variable_scope("relu") as scope:
    scope.reuse_variables()
    threshold = tf.get_variable("threshold")

注意:一旦重新使用设置为True,它将不能在块内设置为False。 而且,如果在其中定义其他变量作用域,它们将自动继承reuse = True。 最后,只有通过get_variable()创建的变量才可以这样复用.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值