The following is from Max Howell @twitter:
Google: 90% of our engineers use the software you wrote (Homebrew), but you can't invert a binary tree on a whiteboard so fuck off.
Now it's your turn to prove that YOU CAN invert a binary tree!
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤10) which is the total number of nodes in the tree -- and hence the nodes are numbered from 0 to N−1. Then N lines follow, each corresponds to a node from 0 to N−1, and gives the indices of the left and right children of the node. If the child does not exist, a -
will be put at the position. Any pair of children are separated by a space.
Output Specification:
For each test case, print in the first line the level-order, and then in the second line the in-order traversal sequences of the inverted tree. There must be exactly one space between any adjacent numbers, and no extra space at the end of the line.
Sample Input:
8
1 -
- -
0 -
2 7
- -
- -
5 -
4 6
Sample Output:
3 7 2 6 4 0 5 1
6 5 7 4 3 2 0 1
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
没什么好说的。。
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
vector<int> level_order;
vector<int> in_order;
struct node{
int parent=-1;
char lchild;
char rchild;
} nodes[10];
int n;
void level_tra(int root)
{
queue<int> q;
q.push(root);
while(!q.empty())
{
int x=q.front();
q.pop();
level_order.push_back(x);
if(nodes[x].rchild!='-') q.push(nodes[x].rchild-'0');
if(nodes[x].lchild!='-') q.push(nodes[x].lchild-'0');
}
}
void inorder_tra(int root)
{
if(nodes[root].rchild != '-') inorder_tra(nodes[root].rchild-'0');
in_order.push_back(root);
if(nodes[root].lchild != '-') inorder_tra(nodes[root].lchild-'0');
}
int main()
{
int id;
char lchild,rchild;
cin>>n;
for(int i=0 ; i<n ; i++)
{
cin>>lchild>>rchild;
nodes[i].lchild = lchild;
nodes[i].rchild = rchild;
if(lchild!='-') nodes[lchild-'0'].parent = i;
if(rchild!='-') nodes[rchild-'0'].parent = i;
}
int root;
for(int i=0 ; i<n ; i++)
if(nodes[i].parent == -1)
{
root = i;
break;
}
level_tra(root);
for(int i=0 ; i<n-1 ; i++)
cout<<level_order[i]<<" ";
cout<<level_order[n-1];
cout<<endl;
inorder_tra(root);
for(int i=0 ; i<n-1 ; i++)
cout<<in_order[i]<<" ";
cout<<in_order[n-1];
return 0;
}