CnOpenData 债券日成交均价

时间区间

1993.02.10-2023.10.12


字段展示

债券日成交均价-英文字段债券日成交均价-中文字段
ID信息编码
SECURITY_ID证券内部编码
TICKER_SYMBOL证券交易代码
TRADE_DATE交易日期
VWAPVWAP
UPDATE_TIME更新时间

样本数据

IDSECURITY_IDTICKER_SYMBOLTRADE_DATEVWAPUPDATE_TIME
信息编码证券内部编码证券交易代码交易日期VWAP更新时间
3368690955911303932023-10-12100.0002023-10-12 16:22:38.757
3367370955951093942023-10-12100.0002023-10-12 16:22:36.203
3368821856021303962023-10-12100.0002023-10-12 16:22:39.100
3368321356051093972023-10-12100.0002023-10-12 16:22:38.020
3367650256951304002023-10-12100.0002023-10-12 16:22:36.700
3369354956991094042023-10-12100.0002023-10-12 16:22:40.170
3367234757641304032023-10-12100.0002023-10-12 16:22:35.990
3369534157661094002023-10-12100.0002023-10-12 16:22:40.557
3369808499960105042023-10-12106.0002023-10-12 16:22:41.137
3368960999981005042023-10-12100.0002023-10-12 16:22:39.390
33684146100580106092023-10-12100.0002023-10-12 16:22:38.210
33696125100591006092023-10-12100.0002023-10-12 16:22:40.690
33691759101160107062023-10-12100.0002023-10-12 16:22:39.823
33673292101171007062023-10-12100.0002023-10-12 16:22:36.130
33685392101450107132023-10-12100.0002023-10-12 16:22:38.457
33673532101461007132023-10-12100.0002023-10-12 16:22:36.167
33697716101921008062023-10-12100.0002023-10-12 16:22:41.053
33679902101930198062023-10-12100.0002023-10-12 16:22:37.437
33694515102131008132023-10-12100.0002023-10-12 16:22:40.370
33682421102140198132023-10-12100.0002023-10-12 16:22:37.883
33674922102330198202023-10-12100.0002023-10-12 16:22:36.423
33686099102341008202023-10-12100.0002023-10-12 16:22:38.577
33692871102420198232023-10-12100.0002023-10-12 16:22:40.033
33668772102431008232023-10-12100.0002023-10-12 16:22:35.320
33672344102581009022023-10-12100.0002023-10-12 16:22:35.990
33689915102590199022023-10-12100.0002023-10-12 16:22:39.450
33692661102671009052023-10-12100.0002023-10-12 16:22:40.000
33681456102680199052023-10-12100.0002023-10-12 16:22:37.723
33696738103121009112023-10-12100.0002023-10-12 16:22:40.797
33676835103130199112023-10-12100.0002023-10-12 16:22:36.747
33688664103631009202023-10-12100.0002023-10-12 16:22:39.193
33670134103640199202023-10-12100.0002023-10-12 16:22:35.617
33695423103901009252023-10-12100.0002023-10-12 16:22:40.573
33668025103910199252023-10-1295.0102023-10-12 16:22:35.080
33670299104141009302023-10-12100.0002023-10-12 16:22:35.640
33681737104150199302023-10-12100.0002023-10-12 16:22:37.770
33673198104340190032023-10-12100.0002023-10-12 16:22:36.117
33684061104351010032023-10-12100.0002023-10-12 16:22:38.190
33697544104580190092023-10-1298.8002023-10-12 16:22:40.950
33677471104591010092023-10-12100.0002023-10-12 16:22:36.840
33672624104831010142023-10-12102.0002023-10-12 16:22:36.030
33685218104840190142023-10-12100.0002023-10-12 16:22:38.427
33689769105021010182023-10-12100.0002023-10-12 16:22:39.420
33693021105030190182023-10-12100.0002023-10-12 16:22:40.060
33685474105220190232023-10-12109.5002023-10-12 16:22:38.473
33673455105231010232023-10-12100.0002023-10-12 16:22:36.157
33686190105340190262023-10-12100.0002023-10-12 16:22:38.597
33696846105351010262023-10-12100.0002023-10-12 16:22:40.820
33678902105460190292023-10-1299.6102023-10-12 16:22:37.243
33698065105471010292023-10-12100.0002023-10-12 16:22:41.133

数据更新频率

年度更新,特殊需求另行联系

内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
内容概要:本文围绕电力系统状态估计中的异常检测与分类展开,重点介绍基于Matlab代码实现的相关算法与仿真方法。文章详细阐述了在状态估计过程中如何识别和分类量测数据中的异常值,如坏数据、拓扑错误和参数误差等,采用包括残差分析、加权最小二乘法(WLS)、标准化残差检测等多种经典与现代检测手段,并结合实际算例验证方法的有效性。同时,文档提及多种状态估计算法如UKF、AUKF、EUKF等在负荷突变等动态场景下的应用,强调异常处理对提升电力系统运行可靠性与安全性的重要意义。; 适合人群:具备电力系统基础知识和一定Matlab编程能力的高校研究生、科研人员及从事电力系【状态估计】电力系统状态估计中的异常检测与分类(Matlab代码实现)统自动化相关工作的工程技术人员。; 使用场景及目标:①掌握电力系统状态估计中异常数据的产生机制与分类方法;②学习并实现主流异常检测算法,提升对状态估计鲁棒性的理解与仿真能力;③服务于科研项目、课程设计或实际工程中的数据质量分析环节; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,配合电力系统状态估计的基本理论进行深入理解,重点关注异常检测流程的设计逻辑与不同算法的性能对比,宜从简单案例入手逐步过渡到复杂系统仿真。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值