题意:给你一个长度为n的序列,问所有区间(n*(n+1)/2个区间)中第k大的平均数。
思路:首先可以想到答案具有单调性,所以可以用二分,但是怎么二分呢?
所以我们只要将所有的sum[i]-ans*i作为新数组,类似求逆序对一样的方法插入BIT,就能计算出满足>=ans的个数, 注意别忘了把0也插入进去。因为存在sum[l-1]-ans*(l-1), 还有k别忘了开long long。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5+5;
int n, a[maxn];
int tree[maxn];
ll sum[maxn], k;
double b[maxn], Hash[maxn];
int lowbit(int x)
{
return x&(-x);
}
void update(int pos, int val)
{
while(pos < maxn)
{
tree[pos] += val;
pos += lowbit(pos);
}
}
int query(int pos)
{
int res = 0;
while(pos)
{
res += tree[pos];
pos -= lowbit(pos);
}
return res;
}
ll judge(double x)
{
memset(tree, 0, sizeof(tree));
for(int i = 0; i <= n; i++)
b[i] = Hash[i] = sum[i]-x*i;
sort(Hash, Hash+n+1);
int d = unique(Hash, Hash+n+1)-Hash;
ll cnt = 0;
for(int i = 0; i <= n; i++)
{
int id = lower_bound(Hash, Hash+d, b[i])-Hash+1;
cnt += query(id);
update(id, 1);
}
return cnt;
}
int main(void)
{
while(cin >> n >> k)
{
memset(sum, 0, sizeof(sum));
for(int i = 1; i <= n; i++)
scanf("%d", &a[i]), sum[i] = sum[i-1]+a[i];
double l = 1, r = 100000, ans;
while(r-l >= 1e-6)
{
double mid = (l+r)/2.0;
if(judge(mid) < k) r = mid;
else l = mid, ans = mid;
}
printf("%.3f\n", ans);
}
return 0;
}