一个逗号(,)引起的BUG (list秒变tuple)

本文记录了一次因疏忽导致的编程错误经历,作者在使用Python过程中,原本的list在赋值时意外变成了tuple,经过一番排查才发现原来是多余的逗号造成的误会。

昨天工作,突然发现之前好好的list,在赋值给新变量后居然类型变了,一个好好的list几分钟不见妥妥的叛变了,变成了tuple,由此,一场闹剧开始上演…

前情回要:

话说有一个类对象内有一方法如下:

def call_frequency(self, data):
    ...
    return list

返回的是一个list,内部是一个个dict,结构如下:

[{xx:xxx,xx:xxx},{xx:xxx,},{x:xxx},...]

闹剧上演:

ok,开始今天任务,开始在另一方法中调用赋值:

data_list = self.call_frequency(data)

结果print data_list,返回值如下:

([{xx:xxx,xx:xxx},{xx:xxx,},{x:xxx},...],)

what a fxxk,瞬间,凌乱了,还以为发现新天地了,啊!原来,list赋值后会变成tuple,加个马甲,以前怎么没发现呢…
还自以为是的在调用data_list时,如下:

call_tel_list = [v.get("call_tel","") for v in data_list[0]]

惊天逆转

晚上,回家,比较得意,欸,又学到一招,不错哟,积蓄,努力。

8小时后,天亮了:

data_list = self.call_frequency(data),

咦,这里怎么有个逗号?

瞬间,懵逼…

四下瞅瞅,

然后,按下←,整个世界清静了,再悄悄把昨天的杰作恢复本来面目,

嗯,今天,天气真好。

真的!


作者:Chihwei_hsu
来源:http://chihweihsu.com
Github:https://github.com/HsuChihwei

import sys sys.path.append('../external-libraries') import airsim import math import numpy as np import cv2 import base64 import os from openai import OpenAI # from gdino import GroundingDINOAPIWrapper, visualize from PIL import Image import uuid from smolagents import tool from typing import List,Tuple,Any from dds_cloudapi_sdk.tasks.v2_task import create_task_with_local_image_auto_resize from dds_cloudapi_sdk import Config from dds_cloudapi_sdk import Client from dds_cloudapi_sdk.visualization_util import visualize_result api_key="xxxxxxxxxxxxxxxxxxxxxxxxxxx" #使用自己的key,火山方舟 gdino_token = "xxxxxxxxxxxxxxxxxxxxxxxxxx" #使用自己的token,dino objects_dict = { "可乐": "airsim_coca", "兰花": "airsim_lanhua", "椰子水": "airsim_yezishui", "小鸭子": "airsim_duck", "镜子": "airsim_mirror_06", "方桌": "airsim_fangzhuo", } #AirSimWrapper client = airsim.MultirotorClient()#run in some machine of airsim,otherwise,set ip="" of airsim #大模型client llm_client = OpenAI( api_key=api_key, base_url="https://ark.cn-beijing.volces.com/api/v3", ) @tool def takeoff() -> str: """ 起飞无人机。返回为字符串,表示动作是否成功。 Returns: str: 成功状态描述 """ client.confirmConnection() client.enableApiControl(True) client.armDisarm(True) client.takeoffAsync().join() return "成功" @tool def land() -> str: """ 降落无人机。返回为字符串,表示动作是否成功。 Returns: str: 成功状态描述 """ client.landAsync().join() return "成功" @tool def get_drone_position()->Tuple[float, float, float, float]: """ 获取无人机当前位置和偏航角 Return: Tuple[x, y, z, yaw_degree]: 包含三维坐标(x/y/z)和偏航角(角度制)的元组 """ pose = client.simGetVehiclePose() yaw_degree = get_yaw() # angle in degree return [pose.position.x_val, pose.position.y_val, pose.position.z_val,yaw_degree] @tool def fly_to(point: Tuple[float,float,float,float]) -> str: """ fly the drone to a specific point Args: point:Tuple[x, y, z, yaw_degree]: 目标点,包含三维坐标(x/y/z)和偏航角(角度制)的元组 """ if point[2] > 0: client.moveToPositionAsync(point[0], point[1], -point[2], 1).join() else: client.moveToPositionAsync(point[0], point[1], point[2], 1).join() return "成功" @tool def fly_path(points: List[Tuple[float, float, float,float]]) -> str: """ fly the drone along a specific path Args: points: 路径点列表,每个点为三维坐标 (x, y, z)和偏航角(角度制)的元组 Returns: str: 成功状态描述 """ airsim_points = [] for point in points: if point[2] > 0: airsim_points.append(airsim.Vector3r(point[0], point[1], -point[2])) else: airsim_points.append(airsim.Vector3r(point[0], point[1], point[2])) client.moveOnPathAsync(airsim_points, 1).join() return "成功" @tool def set_yaw(yaw_degree: float) -> str: """ 设置无人机的偏航角 Args: yaw_degree: 无人机偏航角(角度制) Returns: str: 成功状态描述 """ client.rotateToYawAsync(yaw_degree, 5).join() return "成功" @tool def get_yaw()->float: """ get the yaw angle of the drone Returns: float: yaw_degree, the yaw angle of the drone in degree """ orientation_quat = client.simGetVehiclePose().orientation yaw = airsim.to_eularian_angles(orientation_quat)[2] # get the yaw angle yaw_degree = math.degrees(yaw) return yaw_degree # return the yaw angle in degree @tool def get_position(object_name: str)-> Tuple[float,float,float,float]: """ get the position of a specific object Args: object_name: the name of the object Returns: Tuple[float,float,float,float]: position, the position of the object,点为三维坐标 (x, y, z)和偏航角(角度制)的元组 """ query_string = objects_dict[object_name] + ".*" object_names_ue = [] while len(object_names_ue) == 0: object_names_ue = client.simListSceneObjects(query_string) pose = client.simGetObjectPose(object_names_ue[0]) #yaw_degree = math.degrees(pose.orientation.z_val) #angle in degree orientation_quat = pose.orientation yaw = airsim.to_eularian_angles(orientation_quat)[2] # get the yaw angle yaw_degree = math.degrees(yaw) return [pose.position.x_val, pose.position.y_val, pose.position.z_val, yaw_degree] @tool def look_at(yaw_degree: float)->str: """ 设置无人机的朝向 Args: yaw_degree: 偏航角(角度制) Returns: str: 成功状态描述 """ set_yaw(yaw_degree) return "成功" @tool def turn_left()->str: """ 左转, 10度 Returns: str: 成功状态描述 """ yaw_degree = get_yaw() yaw_degree = yaw_degree - 10 set_yaw(yaw_degree) return "成功" @tool def turn_right()->str: """ 右转, 10度 Returns: str: 成功状态描述 """ yaw_degree = get_yaw() yaw_degree = yaw_degree + 10 set_yaw(yaw_degree) return "成功" @tool def forward()->str: """ 向前移动1米, 太少了不动 Returns: str: 成功状态描述 """ step_length = 1 cur_position = get_drone_position() yaw_degree = cur_position[3] #将角度转换为弧度 yaw = math.radians(yaw_degree) #向前移动0.1米 x = cur_position[0] + step_length*math.cos(yaw) y = cur_position[1] + step_length*math.sin(yaw) z = cur_position[2] fly_to([x, y, z]) return "成功" def reset(): client.reset() def cv2_to_base64(image, format='.png'): """将 OpenCV 内存中的 numpy 数组转为 Base64 字符串""" # 编码为字节流 success, buffer = cv2.imencode(format, image) if not success: raise ValueError("图片编码失败,请检查格式参数") # 转换为 Base64 img_bytes = buffer.tobytes() return base64.b64encode(img_bytes).decode('utf-8') def get_image(): """ 获得前置摄像头渲染图像 :return: """ camera_name = '0' # 前向中间 0,底部中间 3 image_type = airsim.ImageType.Scene # 彩色图airsim.ImageType.Scene, Infrared response = client.simGetImage(camera_name, image_type, vehicle_name='') # simGetImage接口的调用方式如下 img_bgr = cv2.imdecode(np.array(bytearray(response), dtype='uint8'), cv2.IMREAD_UNCHANGED) # 从二进制图片数据中读 img = cv2.cvtColor(img_bgr, cv2.COLOR_RGBA2RGB) # 4通道转3 #print("image shape:", img.shape) return img @tool def look()->str: """ 获得前置摄像头渲染图像,并给出图像中主要物体列表 Return: str: 目标名称用英文逗号分隔 """ #step 1,读取摄像头图片,已经是RGB的了 rgb_image = get_image() #转成base64格式的png图片 base64_str = cv2_to_base64(rgb_image, ".png") # png或 '.jpg' #step 2,进行图片理解 # Image input: response = llm_client.chat.completions.create( model="doubao-1-5-vision-pro-32k-250115", messages=[ { "role": "user", "content": [ {"type": "text", "text": "图片中有哪些目标,请给出名称即可,给出常见的,清晰可见的目标即可,多个目标名称之间用英文逗号分隔"}, { "type": "image_url", "image_url": { # "url": "https://yt-shanghai.tos-cn-shanghai.volces.com/tello.jpg" # 使用Base64编码的本地图片,注意img/png, img/jpg不能错 "url": f"data:image/png;base64,{base64_str}" } }, ], } ], temperature=0.01 ) content = response.choices[0].message.content return content @tool def detect(object_names: str) -> Tuple[List[str], List[Any]]: """ 对本地图像进行目标检测,返回检测到的类别和框 Args: object_names (str): 需要检测的目标类别名称(英文逗号分隔,如 'duck, cola') Returns: Tuple[List[str], List[Any]]: - obj_id_list: 检测到的对象ID列表 - obj_locs: 对象位置信息(如边界框坐标) """ config = Config(gdino_token) client = Client(config) rgb_image = get_image() file_name = f"random_{uuid.uuid4().hex}.png" cv2.imwrite(file_name, rgb_image) try: task = create_task_with_local_image_auto_resize( api_path="/v2/task/dinox/detection", api_body_without_image={ "model": "DINO-X-1.0", "prompt": {"type": "text", "text": object_names}, "targets": ["bbox"], "bbox_threshold": 0.25, "iou_threshold": 0.8 }, image_path=file_name ) client.run_task(task) result = task.result obj_id_list = [obj['category'] for obj in result['objects']] obj_locs = [obj['bbox'] for obj in result['objects']] return obj_id_list, obj_locs finally: if os.path.exists(file_name): os.remove(file_name) def detect_with_img(object_names: str)-> Tuple[List[str], List[str], Image.Image]: """ 在图像上运行目标检测模型,返回检测结果及标记框图像 Args: object_name: 需要查找的目标名称,注意这个函数输入的目标名称object_name只能是英文,如果需要搜索的名称是中文,则需要翻译一下 Returns: Tuple[List[str], List[List[float]]]: - 检测到的对象名称列表 - 每个对象的边界框坐标列表(格式:[xmin, ymin, xmax, ymax]) - 带标记框的PIL图像对象 """ config = Config(gdino_token) client = Client(config) #step 1,读取摄像头图片,已经是RGB的了 rgb_image = get_image() #直接使用cv图片win下有bug # 生成随机文件名(含扩展名) file_name = f"random_{uuid.uuid4().hex}.png" # 示例输出:random_1a2b3c4d5e.png cv2.imwrite(file_name, rgb_image) # 创建检测任务 task = create_task_with_local_image_auto_resize( api_path="/v2/task/dinox/detection", api_body_without_image={ "model": "DINO-X-1.0", "prompt": { "type": "text", "text": object_names }, "targets": ["bbox"], "bbox_threshold": 0.25, "iou_threshold": 0.8 }, image_path=file_name ) client.run_task(task) result = task.result # 解析检测结果 obj_id_list = [obj['category'] for obj in result['objects']] obj_locs = [obj['bbox'] for obj in result['objects']] # 可视化 try: visualize_result(image_path=file_name, result=result, output_dir="./") vis_img = Image.open(file_name) # 或可用 output_dir 下的可视化图片 except Exception as e: vis_img = None #os.remove(file_name) return obj_id_list, obj_locs, vis_img @tool def ob_objects(obj_name_list:List[str])-> List[Tuple[str, float, float]]: """ 对无人机获得的图像进行目标定位,获得目标列表 [ (对象名称、距离、角度(以度为单位)),...] Args: obj_name_list: 目标名称列表,必须是英文,如果输入的是中文,请先翻译 Returns: List: [(对象名称、和无人机的距离、和无人机的角度(以度为单位)>,...] """ #step1, 目标检测 prompt = ".".join(obj_name_list) # obj_id_list: [obj1, obj2,...], obj_locs: [[xmin, ymin, xmax, ymax],[xmin, ymin, xmax, ymax],...] obj_id_list, obj_locs = detect(prompt) #step2, 获得深度视觉数据 responses = client.simGetImages([ # png format airsim.ImageRequest(0, airsim.ImageType.Scene, pixels_as_float=False, compress=True), # floating point uncompressed image,深度图, 像素点代表到相平面距离 airsim.ImageRequest(0, airsim.ImageType.DepthPlanar, pixels_as_float=True), # 像素点代表的到相机的距离 airsim.ImageRequest(0, airsim.ImageType.DepthPerspective, pixels_as_float=True) ] ) img_depth_planar = np.array(responses[1].image_data_float).reshape(responses[1].height, responses[0].width) img_depth_perspective = np.array(responses[2].image_data_float).reshape(responses[2].height, responses[1].width) #一般图片 image_data = responses[0].image_data_uint8 img = cv2.imdecode(np.array(bytearray(image_data), dtype='uint8'), cv2.IMREAD_UNCHANGED) # 从二进制图片数据中读 img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB) # 4通道转3 final_obj_list = [] #最终结果列表 #构建目标结果 index = 0 for bbox in obj_locs: center_x = int((bbox[0] + bbox[2]) / 2) center_y = int((bbox[1] + bbox[3]) / 2) depth_distance = img_depth_planar[center_y, center_x, ] #相平面距离 camera_distance = img_depth_perspective[center_y, center_x] #相机距离 #求角度 angel = math.acos(depth_distance / camera_distance) angel_degree = math.degrees(angel) # 判断正负,左边为正,右边为负,只看偏航角 if center_x < img.shape[1] / 2: # 如果目标在图像的左侧,向左转,degree 为负数 angel_degree = -1 * angel_degree obj_name = obj_id_list[index]#获得目标名称,可能有多个 obj_info = (obj_name, camera_distance, angel_degree) final_obj_list.append(obj_info) index = index + 1 return final_obj_list @tool def watch(prompt:str)->str: """ 获得前置摄像头渲染图像,并根据提示词回答问题 Args: prompt: 提示词 Return: str: 目标名称用英文逗号分隔 """ #step 1,读取摄像头图片,已经是RGB的了 rgb_image = get_image() #转成base64格式的png图片 base64_str = cv2_to_base64(rgb_image, ".png") # png或 '.jpg' #step 2,进行图片理解 # Image input: response = llm_client.chat.completions.create( model="doubao-1-5-vision-pro-32k-250115", messages=[ { "role": "user", "content": [ {"type": "text", "text": prompt}, { "type": "image_url", "image_url": { # "url": "https://yt-shanghai.tos-cn-shanghai.volces.com/tello.jpg" # 使用Base64编码的本地图片,注意img/png, img/jpg不能错 "url": f"data:image/png;base64,{base64_str}" } }, ], } ], temperature=0.01 ) content = response.choices[0].message.content return content @tool def turn(angle: float)->str: """ 无人机旋转angle角度 Args: angle: 无人机需要旋转的角度(以度为单位) Returns: str: 成功状态描述 """ yaw_degree = get_yaw() yaw_degree = yaw_degree + angle set_yaw(yaw_degree) return "成功" @tool def move(distance: float)->str: """ 向前移动distance米的距离 Args: distance: 无人机向前移动的距离,单位为米 Returns: str: 成功状态描述 """ step_length = distance cur_position = get_drone_position() yaw_degree = cur_position[3] #将角度转换为弧度 yaw = math.radians(yaw_degree) #向前移动0.1米 x = cur_position[0] + step_length*math.cos(yaw) y = cur_position[1] + step_length*math.sin(yaw) z = cur_position[2] fly_to([x, y, z, 0]) return "成功" if __name__ == "__main__": takeoff() object = look() print(object) print("done") 详细解释一下
08-02
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值