Prime Path
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 13905 | Accepted: 7841 |
Description

— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.
Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
1033The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.
1733
3733
3739
3779
8779
8179
Input
One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).
Output
One line for each case, either with a number stating the minimal cost or containing the word Impossible.
Sample Input
3 1033 8179 1373 8017 1033 1033
Sample Output
6 7 0
这个题一看知道初始状态,知道末状态,准备用双向BFS来做,但是老是WA,也一直苦于找不到WA数据。所以暂时先用普通的单向BFS来做,回头再用双向的做一做。
这个题只需要把可以达到的质数入队就可以了。注意判重。
/*************************************************************************
> File Name: Prim_Path_by_bfs.cpp
> Author: Zhanghaoran0
> Mail: chiluamnxi@gmail.com
> Created Time: 2015年07月29日 星期三 08时37分18秒
************************************************************************/
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <math.h>
using namespace std;
struct node{
int x;
int step;
}q[10000];
bool flag[10000];
int T;
int head, tail;
int start, end;
bool judge_prim(int x){
if(x == 1 || x == 0)
return false;
if(x == 2)
return true;
for(int i = 2; i <= (int)sqrt(x); i ++){
if(x % i == 0)
return false;
}
return true;
}
int bfs(){
int temp;
head = 0;
tail = 1;
q[head].step = 0;
q[head].x = start;
memset(flag, 0, sizeof(flag));
while(head < tail){
for(int i = 1; i <= 9; i += 2){
temp = q[head].x / 10 * 10 + i;
if(judge_prim(temp) && !flag[temp]){
if(temp == end)
return q[head].step + 1;
else{
q[tail].x = temp;
q[tail ++].step = q[head].step + 1;
flag[temp] = true;
}
}
else
continue;
}
for(int i = 0; i <= 9; i ++){
temp = q[head].x /100 * 100 + 10 * i + q[head].x % 10;
if(judge_prim(temp) && !flag[temp]){
if(temp == end)
return q[head].step + 1;
else{
q[tail].x = temp;
q[tail ++].step = q[head].step + 1;
flag[temp] = true;
}
}
else
continue;
}
for(int i = 0; i <= 9; i ++){
temp = q[head].x / 1000 * 1000 + q[head].x / 10 % 10 * 10 + q[head].x % 10 + i * 100;
if(judge_prim(temp) && !flag[temp]){
if(temp == end)
return q[head].step + 1;
else{
q[tail].x = temp;
q[tail ++].step = q[head].step + 1;
flag[temp] = true;
}
}
else
continue;
}
for(int i = 1; i <= 9; i ++){
temp = q[head].x % 1000 + i * 1000;
if(judge_prim(temp) && !flag[temp]){
if(temp == end)
return q[head].step + 1;
else{
q[tail].x = temp;
q[tail ++].step = q[head].step + 1;
flag[temp] = true;
}
}
else
continue;
}
head ++;
}
return -1;
}
int main(void){
cin >> T;
int steps;
while(T --){
cin >> start >> end;
if(start == end){
cout << "0" << endl;
continue;
}
steps = bfs();
if(steps != -1){
cout << steps << endl;
continue;
}
else
cout << "IMPOSSIBLE" << endl;
}
return 0;
}