(B卷,100分)- 分割数组的最大差值(Java & JS & Python & C)华为OD

(B卷,100分)- 分割数组的最大差值(Java & JS & Python & C)

题目描述

给定一个由若干整数组成的数组nums ,可以在数组内的任意位置进行分割,将该数组分割成两个非空子数组(即左数组和右数组),分别对子数组求和得到两个值,计算这两个值的差值,请输出所有分割方案中,差值最大的值。

输入描述

第一行输入数组中元素个数n,1 < n ≤ 100000
第二行输入数字序列,以空格进行分隔,数字取值为4字节整数

输出描述

输出差值的最大取值

用例
输入6
1 -2 3 4 -9 7
输出10
说明

将数组 nums 划分为两个非空数组的可行方案有:

左数组 = [1] 且 右数组 = [-2,3,4,-9,7],和的差值 = | 1 - 3 | = 2
左数组 = [1,-2] 且 右数组 = [3,4,-9,7],和的差值 = | -1 - 5 | =6
左数组 = [1,-2,3] 且 右数组 = [4,-9,7],和的差值 = | 2 - 2 | = 0
左数组 = [1,-2,3,4] 且右数组=[-9,7],和的差值 = | 6 - (-2) | = 8,
左数组 = [1,-2,3,4,-9] 且 右数组 = [7],和的差值 = | -3 - 7| = 10最大的差值为10

题目解析

我的解题思路如下:

定义一个leftSum,用于统计左数组的和,初始为0

定义一个rightSum,用于统计右数组的和,初始为sum(nums)

然后,开始从 i = 0,开始遍历输入的数组nums的每一个元素nums[i],

leftSum += nums[i]

rightSum -= nums[i]

然后计算两个和的差值绝对值diff,比较最大的maxDiff,若大于maxDiff,则maxDiff = diff

之后,在 i++,循环上面逻辑,直到 i = nums.length-2,因为左右数组不能为空,因此右数组至少有一个nums[nums.length-1]元素

上面算法是一个O(n)时间复杂度,对于1 < n ≤ 100000数量级而言,不会超时。

JS算法源码
/* JavaScript Node ACM模式 控制台输入获取 */
const readline = require("readline");

const rl = readline.createInterface({
  input: process.stdin,
  output: process.stdout,
});

const lines = [];
rl.on("line", (line) => {
  lines.push(line);

  if (lines.length === 2) {
    const n = parseInt(lines[0]);
    const nums = lines[1].split(" ").map(Number);

    console.log(getResult(nums, n));

    lines.length = 0;
  }
});

function getResult(nums, n) {
  let leftSum = 0;
  let rightSUm = nums.reduce((a, b) => a + b);

  let maxDiff = 0;
  for (let i = 0; i < n-1; i++) {
    leftSum += nums[i];
    rightSUm -= nums[i];

    const diff = Math.abs(leftSum - rightSUm);
    if (diff > maxDiff) maxDiff = diff;
  }

  return maxDiff;
}
Java算法源码
import java.util.Arrays;
import java.util.Scanner;

public class Main {
  public static void main(String[] args) {
    Scanner sc = new Scanner(System.in);

    int n = Integer.parseInt(sc.nextLine());
    long[] nums = Arrays.stream(sc.nextLine().split(" ")).mapToLong(Long::parseLong).toArray();

    System.out.println(getResult(nums, n));
  }

  public static long getResult(long[] nums, int n) {
    long leftSum = 0;
    long rightSum = Arrays.stream(nums).sum();

    long maxDiff = 0;

    for (int i = 0; i < n - 1; i++) {
      leftSum += nums[i];
      rightSum -= nums[i];

      long diff = Math.abs(leftSum - rightSum);
      if (diff > maxDiff) maxDiff = diff;
    }

    return maxDiff;
  }
}
Python算法源码
# 输入获取
n = int(input())
nums = list(map(int, input().split()))


# 算法入口
def getResult():
    leftSum = 0
    rightSum = sum(nums)

    maxDiff = 0

    for i in range(n-1):
        leftSum += nums[i]
        rightSum -= nums[i]

        diff = abs(leftSum - rightSum)
        maxDiff = max(maxDiff, diff)

    return maxDiff


# 算法调用
print(getResult())

C算法源码
#include <stdio.h>

#define MAX_SIZE 100000
#define MAX(a,b) a > b ? a : b
#define DIFF_ABS(a, b) a > b ? a - b : b - a

long getResult(long* nums, int n);
long sum(long* arr, int arr_size);

int main()
{
	int n;
	scanf("%d", &n);
	
	long nums[MAX_SIZE];
	for(int i=0; i<n; i++) {
		scanf("%ld", &nums[i]);
	}
	
	printf("%ld\n", getResult(nums, n));
	
	return 0;
}

long getResult(long* nums, int n)
{
	long leftSum = 0;
	long rightSum = sum(nums, n);
	
	long maxDiff = 0;
	
	for(int i=0; i<n-1; i++) {
		leftSum += nums[i];
		rightSum -= nums[i];
		
		long diff = DIFF_ABS(leftSum, rightSum);
		maxDiff = MAX(maxDiff, diff);
	}
	
	return maxDiff;
}

long sum(long* arr, int arr_size)
{
	long ans = 0;
	
	for(int i=0; i<arr_size; i++) {
		ans += arr[i];
	}
	
	return ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值