resnet-18的实现学习,用于MNIST数字识别



https://colab.research.google.com/drive/1L7Dp08UmepHif5XCfN1z6uD3OZ8mN0nR?usp=sharing

上面是colab的共享,里面的代码可以直接运行。

今天学习一下了resnet-18的实现,虽然现在很多可以直接调用这个模型,但还是希望自己搭建一下学习一下这个的层次。

理论参考一下:ResNet-18超详细介绍!!!!_resnet18-优快云博客

class BasicBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(BasicBlock, self).__init__()
        # 第一层卷积
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)

        # 第二层卷积
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)

        # 快捷连接(skip connection)
        self.shortcut = nn.Sequential()
        if stride != 1 or in_channels != out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)  # 添加残差连接
        out = F.relu(out)
        return out

class ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=1000):
        super(ResNet, self).__init__()
        self.in_channels = 64

        # 第一层卷积和池化
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        # 堆叠的残差块
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)

        # 最后的全连接层
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512, num_classes)

    def _make_layer(self, block, out_channels, num_blocks, stride):
        layers = []
        layers.append(block(self.in_channels, out_channels, stride))
        self.in_channels = out_channels
        for _ in range(1, num_blocks):
            layers.append(block(self.in_channels, out_channels))
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.maxpool(F.relu(self.bn1(self.conv1(x))))
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)  # 展平
        x = self.fc(x)
        return x

# 创建 ResNet-18 模型
model = ResNet(BasicBlock, [2, 2, 2, 2], num_classes=10)

这里# 第一层卷积和池化的输入通道数默认是3,可以根据自己的情况修改self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)。还有比如我用的MNIST就是改成1,对应的分类个数num_classes=10。
完整的代码放到:
https://colab.research.google.com/drive/1L7Dp08UmepHif5XCfN1z6uD3OZ8mN0nR?usp=sharing

结果:一个epoch精度就到了96%了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值