从0开始学习机器学习--Day14--如何优化神经网络的代价函数

在上一篇文章中,解析了神经网络处理分类问题的过程,类似的,在处理多元分类问题时,神经网络会按照类型分成多个输出层的神经元来表示,如下:

处理4个分类问题时的神经网络

我们可以看到,相较于之前的分类问题y=[1,2,3,4],,这里用的输出是以向量的方式来区分行人、汽车、摩托车还有卡车四种图片,即输出四维向量与原始数据去对比是否预测成功。

神经网络的代价函数(Cost function of Neural Networks)

在学习代价函数之前,让我们先了解一些基本知识。在神经网络中,我们把L记为神经网络的层数, s_{l}则是对应层数的神经元个数。通常我们将神经网络的分类问题分为二元和多元,当学习问题是二元分类问题时,我们只有一个输出单元,其值为0或1,此时s_{L}=1,也记作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值