633. 平方数之和
难度:中等
语言:java
题目内容
给定一个非负整数 c ,你要判断是否存在两个整数 a 和 b,使得 a^2 + b^2 = c 。
解题思路
基于昨天刚做过1011题,能否在D天内运送货物,重要的点就是,找到边界,然后进行二分查找。
在这题里面,能否存在,好像也是类似查找的一个题目,也是一个定好边界,去找值的一个题目,因为a,b可以为0,所以左边界要从0开始算,右边界,就是c的平方根,想法比较简单,麻烦的是数形转换,我记得python似乎可以智能转换,但是java对数据类型要求比较严格。有了如下的代码
class Solution {
public boolean judgeSquareSum(int c) {
for (long a = 0; a * a <= c; a++) {
// 用long是因为防止int边界溢出,但是我发现用int会超时,但是long不会,不太清楚为什么,有人解释一下么
double b = Math.sqrt(c - a * a);
if (b == (int) b) {
return true;
}
}
return false;
}
}
上面是类似遍历求解的方法,根据一个值,求出平方和为c时候的解,判断是否为整数,还有个双指针法,我觉得意思差不太多,就是两个值a,b,严格规定a<=b,初始值为上面方法的左右边界,如果两数的平方和小于c,就a加一,否则b减一。
class Solution {
public boolean judgeSquareSum(int c) {
long left = 0;
long right = (long) Math.sqrt(c);
while (left <= right) {
long sum = left * left + right * right;
if (sum == c) {
return true;
} else if (sum > c) {
right--;
} else {
left++;
}
}
return false;
}
}
代码就直接留一下答案的了,不是很难写,我觉得这题没有中等的难度,LeetCode有时候的分类就比较迷,当然还有费马平方和,但是我觉得我记不住。。。所以就不写了。