题目链接在此
一开始用搜索,发现超时(不要嘲笑我)。
还是把代码po一下好了:
#include<stdio.h>
void dfs(int num, int path, int length, int limit, int& total) {
if (path == length) {
total++;
return;
}
for (int i = num * 2; i <= limit; i++) {
dfs(i, path + 1, length, limit, total);
}
}
int main() {
int caseNum;
int length, limit;
scanf("%d", &caseNum);
for (int t = 1; t <= caseNum; t++) {
scanf("%d%d", &length, &limit);
int total = 0;
for (int i = 1; i <= limit; i++){
dfs(i, 1, length, limit, total);
}
printf("Case %d: n = %d, m = %d, # lists = %d\n", t, length, limit, total);
}
return 0;
}
还得用动态规划。
参考了这位大神的思路。
(1)令dp[i][j] 表示长度为i,恰好以j为结尾的序列的可能数;
(2)设置初始状态: dp[1][j] = 1(1<=j<=M): 表示长度为1,恰好以j为结尾的序列数为1。
(3)列出状态转移方程:对2<=i<=N, dp[i][j] = ∑dp[i-1][k](1<=k<=j/2 ):表示长度为i,恰好以j结尾的序列的总数等于长度为i-1,以小于等于j/2结尾的序列的个数之和。
(4)最终答案= ∑ dp[N][m],(1<=m<=M)
另外要注意数据规模问题,用long long
代码:
#include<stdio.h>
int main() {
int caseNum;
int length, limit;
scanf("%d", &caseNum);
for (int t = 1; t <= caseNum; t++) {
scanf("%d%d", &length, &limit);
long long dp[11][2001] = {0};
long long total = 0;
for (int n = 1; n <= length; n++) {
for (int m = 1; m <= limit; m++){
if (n == 1)
dp[n][m] = 1;
else {
for (int k = 1; k <= m / 2; k++) {
dp[n][m] += dp[n - 1][k];
}
}
}
}
for (int m = 1; m <= limit; m++)
total += dp[length][m];
printf("Case %d: n = %d, m = %d, # lists = %lld\n", t, length, limit, total);
}
return 0;
}
最后,这位大神还提到了如何做优化。