Leetcode Easy problem #1

该博客记录了用Python解决LeetCode简单题的经验。涉及两道题,一是两数之和,给定整数数组和目标值,找出两数索引;二是反转整数,反转32位有符号整数。文中给出了具体示例和解题思路,还指出了易出错点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Leetcode Easy problem #1(Python June 19. 2019)

This is written to record the experience I solve the leetcode easy problems. I will take down some algorithm which I prefer and record some point where I may make mistake easily.

1. Two Sums

Given an array of integers, return indices of the two numbers such that they add up to a specific target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

Given nums = [2, 7, 11, 15], target = 9,
Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].

Solution:

class Solution(object):
    def twoSum(self, nums, target):
        ""
        :type nums: List[int]
        :type target: int
        :rtype: List[int]
        ""
        h = {}
        for i, n in list(enumerate(nums)):
            if target-n not in h:
                h[n] = i
            else:
                return [h[target-n], i]

enumerate is used for marking the numbers in the list with the serial numbers and puting them in the original list in the form of tuples.
note : enumerate(list) would just a code, so use it with list(enumerate(list)) or other style.
eg: list(enumerate(1,3,4,5)) —> [(0,1), (1,3), (2,4), (3,5)]

7. Reverse Integer

Given a 32-bit signed integer, reverse digits of an integer.

Example 1:

Input: 123
Output: 321
Example 2:

Input: -123
Output: -321
Example 3:

Input: 120
Output: 21

Note:
Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231, 231 − 1]. For the purpose of this problem, assume that your function returns 0 when the reversed integer overflows.

Solution:

class Solution(object):
    def reverse(self, x):
        ""
        :type x: int
        :rtype: int
        ""
        n = x if x > 0 else -x
        a = 0
        while n:
            a = a*10 + n%10
            n = int(n/10)
        if a > 0x7fffffff or a < -0x7fffffff:
            return 0
        else:
            return a if x > 0 else -a

Note: % would be different between positive number and negative number, eg: 123%10 = 3, -123%10 = 7
0x7fffffff is the biggest number in 32-bit number

a = 0
while n:
a = a*10 + n%10
n = int(n/10)

This is a good way to get the reverse of a interger.

内容概要:该论文聚焦于T2WI核磁共振图像超分辨率问题,提出了一种利用T1WI模态作为辅助信息的跨模态解决方案。其主要贡献包括:提出基于高频信息约束的网络框架,通过主干特征提取分支和高频结构先验建模分支结合Transformer模块和注意力机制有效重建高频细节;设计渐进式特征匹配融合框架,采用多阶段相似特征匹配算法提高匹配鲁棒性;引入模型量化技术降低推理资源需求。实验结果表明,该方法不仅提高了超分辨率性能,还保持了图像质量。 适合人群:从事医学图像处理、计算机视觉领域的研究人员和工程师,尤其是对核磁共振图像超分辨率感兴趣的学者和技术开发者。 使用场景及目标:①适用于需要提升T2WI核磁共振图像分辨率的应用场景;②目标是通过跨模态信息融合提高图像质量,解决传统单模态方法难以克服的高频细节丢失问题;③为临床诊断提供更高质量的影像资料,帮助医生更准确地识别病灶。 其他说明:论文不仅提供了详细的网络架构设计与实现代码,还深入探讨了跨模态噪声的本质、高频信息约束的实现方式以及渐进式特征匹配的具体过程。此外,作者还对模型进行了量化处理,使得该方法可以在资源受限环境下高效运行。阅读时应重点关注论文中提到的技术创新点及其背后的原理,理解如何通过跨模态信息融合提升图像重建效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值