量化PTQ QAT

博客围绕量化技术展开,涉及PTQ和QAT相关内容。量化是信息技术领域重要技术,PTQ和QAT在其中发挥关键作用,能提升系统性能和效率。

http://www.bryh.cn/a/337445.html

**项目概述:** 本资源提供了一套采用Vue.js与JavaScript技术栈构建的古籍文献文字检测与识别系统的完整源代码及相关项目文档。当前系统版本为`v4.0+`,基于`vue-cli`脚手架工具开发。 **环境配置与运行指引:** 1. **获取项目文件**后,进入项目主目录。 2. 执行依赖安装命令: ```bash npm install ``` 若网络环境导致安装缓慢,可通过指定镜像源加速: ```bash npm install --registry=https://registry.npm.taobao.org ``` 3. 启动本地开发服务器: ```bash npm run dev ``` 启动后,可在浏览器中查看运行效果。 **构建与部署:** - 生成测试环境产物: ```bash npm run build:stage ``` - 生成生产环境优化版本: ```bash npm run build:prod ``` **辅助操作命令:** - 预览构建后效果: ```bash npm run preview ``` - 结合资源分析报告预览: ```bash npm run preview -- --report ``` - 代码质量检查与自动修复: ```bash npm run lint npm run lint -- --fix ``` **适用说明:** 本系统代码经过完整功能验证,运行稳定可靠。适用于计算机科学、人工智能、电子信息工程等相关专业的高校师生、研究人员及开发人员,可用于学术研究、课程实践、毕业设计或项目原型开发。使用者可在现有基础上进行功能扩展或定制修改,以满足特定应用场景需求。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【EI复现】基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度(Matlab代码实现)内容概要:本文介绍了基于阶梯碳交易机制的虚拟电厂优化调度模型,重点研究了包含P2G-CCS(电转气-碳捕集与封存)耦合技术和燃气掺氢技术的综合能源系统在Matlab平台上的仿真与代码实现。该模型充分考虑碳排放约束与阶梯式碳交易成本,通过优化虚拟电厂内部多种能源设备的协同运行,提升能源利用效率并降低碳排放。文中详细阐述了系统架构、数学建模、目标函数构建(涵盖经济性与环保性)、约束条件处理及求解方法,并依托YALMIP工具包调用求解器进行实例验证,实现了科研级复现。此外,文档附带网盘资源链接,提供完整代码与相关资料支持进一步学习与拓展。; 适合人群:具备一定电力系统、优化理论及Matlab编程基础的研究生、科研人员或从事综合能源系统、低碳调度方向的工程技术人员;熟悉YALMIP和常用优化算法者更佳。; 使用场景及目标:①学习和复现EI级别关于虚拟电厂低碳优化调度的学术论文;②掌握P2G-CCS、燃气掺氢等新型低碳技术在电力系统中的建模与应用;③理解阶梯碳交易机制对调度决策的影响;④实践基于Matlab/YALMIP的混合整数线性规划或非线性规划问题建模与求解流程。; 阅读建议:建议结合提供的网盘资源,先通读文档理解整体思路,再逐步调试代码,重点关注模型构建与代码实现之间的映射关系;可尝试修改参数、结构或引入新的约束条件以深化理解并拓展应用场景。
12-08
### PTQ详细介绍 #### 原理 PTQ即训练后量化,没有反向传播不进行权重更新,前向传播只是用来统计。其核心是在训练图里插入FakeQuant节点,公式为$w_q = round(clip(w / scale)) * scale$ 。前向过程模拟量化误差,反向传播时采用STE把梯度直接传给FP32权重。PTQ不依赖原始训练过程,只需对模型进行少量样本的统计与校准即可完成,通过分析权重和激活的统计分布,寻找一个最优的量化映射,使离散化误差最小化。PTQ没有反向传播不进行weight更新,前向只是用来统计,伪量化PTQ来说可有可无 [^3][^4]。 #### 应用场景 适用于模型已训练好,且对精度要求不苛刻的场景。当模型需要快速部署到边缘设备,且能够接受一定的精度损失时,PTQ是一个不错的选择。它可以在不进行大规模重新训练的情况下,快速将模型进行量化,减小模型大小并提升推理速度 [^3]。 ### QAT详细介绍 #### 原理 QAT量化感知训练,需要插入QAT算子且需要训练进行微调。流程为准备一个预训练模型,在模型中添加QAT算子,微调带有QAT算子的模型,将微调后模型的量化参数(q - params)存储下来,最后量化模型执行推理。在训练时采用伪量化,因为如果不使用伪量化,由于导数为0无法进行梯度更新。在训练图里插入FakeQuant节点,前向模拟量化误差,反向传播时STE把梯度直接传给FP32权重,让网络学会“抗量化”。其粒度方面,默认权重是per - channel,激活是per - tensor,最新研究中scale/zero - point亦可作为可学习参数进行端到端更新 [^2][^3]。 #### 应用场景 适用于精度敏感,可接受再训练的场景。当模型对精度要求较高,且有足够的训练资源(如完整训练集和GPU时间)时,QAT能够在量化的同时保证模型精度几乎无损,支持4 - bit超低比特量化 [^3]。 以下是PyTorch中QAT的示例代码: ```python import torch, torchvision, torch.quantization as tq model = torchvision.models.resnet18(pretrained=True) model.train() tq.prepare_qat(model, qconfig=tq.get_default_qat_qconfig('fbgemm')) opt = torch.optim.AdamW(model.parameters(), 1e-4) # 假设train_loader是训练数据加载器 for x, y in train_loader: loss(model(x), y).backward() opt.step() torch.jit.save(tq.convert(model.eval()), 'qat.pt') ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值