量化PTQ QAT

博客围绕量化技术展开,涉及PTQ和QAT相关内容。量化是信息技术领域重要技术,PTQ和QAT在其中发挥关键作用,能提升系统性能和效率。

http://www.bryh.cn/a/337445.html

【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)》的技术资源,聚焦于电力系统中低碳经济调度问题,结合N-1安全准则与分布鲁棒机会约束(DRCC)方法,提升调度模型在不确定性环境下的鲁棒性和可行性。该资源提供了完整的Matlab代码实现,涵盖建模、优化求解及仿真分析全过程,适用于复杂电力系统调度场景的科研复现与算法验证。文中还列举了大量相关领域的研究主题与代码资源,涉及智能优化算法、机器学习、电力系统管理、路径规划等多个方向,展示了广泛的科研应用支持能力。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源调度、智能电网相关工作的工程师。; 使用场景及目标:①复现高水平期刊(如EI/SCI)关于低碳经济调度的研究成果;②深入理解N-1安全约束与分布鲁棒优化在电力调度中的建模方法;③开展含新能源接入的电力系统不确定性优化研究;④为科研项目、论文撰写或工程应用提供可运行的算法原型和技术支撑。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码与案例数据,按照目录顺序逐步学习,并重点理解DRCC建模思想与Matlab/YALMIP/CPLEX等工具的集成使用方式,同时可参考文中列出的同类研究方向拓展研究思路。
内容概要:本文详细介绍了一个基于MATLAB实现的电力负荷预测项目,采用K近邻回归(KNN)算法进行建模。项目从背景意义出发,阐述了电力负荷预测在提升系统效率、优化能源配置、支撑智能电网和智慧城市建设等方面的重要作用。针对负荷预测中影响因素多样、时序性强、数据质量差等挑战,提出了包括特征工程、滑动窗口构造、数据清洗与标准化、K值与距离度量优化在内的系统性解决方案。模型架构涵盖数据采集、预处理、KNN回归原理、参数调优、性能评估及工程部署全流程,并支持多算法集成与可视化反馈。文中还提供了MATLAB环境下完整的代码实现流程,包括数据加载、归一化、样本划分、K值选择、模型训练预测、误差分析与结果可视化等关键步骤,增强了模型的可解释性与实用性。; 适合人群:具备一定MATLAB编程基础和机器学习基础知识,从事电力系统分析、能源管理、智能电网或相关领域研究的研发人员、工程师及高校师生;适合工作1-3年希望提升实际项目开发能力的技术人员; 使用场景及目标:①应用于短期电力负荷预测,辅助电网调度与发电计划制定;②作为教学案例帮助理解KNN回归在实际工程中的应用;③为新能源接入、需求响应、智慧能源系统提供数据支持;④搭建可解释性强、易于部署的轻量级预测模型原型; 阅读建议:建议结合MATLAB代码实践操作,重点关注特征构造、参数调优与结果可视化部分,深入理解KNN在时序数据中的适应性改进方法,并可进一步拓展至集成学习或多模型融合方向进行研究与优化。
12-08
### PTQ详细介绍 #### 原理 PTQ即训练后量化,没有反向传播不进行权重更新,前向传播只是用来统计。其核心是在训练图里插入FakeQuant节点,公式为$w_q = round(clip(w / scale)) * scale$ 。前向过程模拟量化误差,反向传播时采用STE把梯度直接传给FP32权重。PTQ不依赖原始训练过程,只需对模型进行少量样本的统计与校准即可完成,通过分析权重和激活的统计分布,寻找一个最优的量化映射,使离散化误差最小化。PTQ没有反向传播不进行weight更新,前向只是用来统计,伪量化PTQ来说可有可无 [^3][^4]。 #### 应用场景 适用于模型已训练好,且对精度要求不苛刻的场景。当模型需要快速部署到边缘设备,且能够接受一定的精度损失时,PTQ是一个不错的选择。它可以在不进行大规模重新训练的情况下,快速将模型进行量化,减小模型大小并提升推理速度 [^3]。 ### QAT详细介绍 #### 原理 QAT量化感知训练,需要插入QAT算子且需要训练进行微调。流程为准备一个预训练模型,在模型中添加QAT算子,微调带有QAT算子的模型,将微调后模型的量化参数(q - params)存储下来,最后量化模型执行推理。在训练时采用伪量化,因为如果不使用伪量化,由于导数为0无法进行梯度更新。在训练图里插入FakeQuant节点,前向模拟量化误差,反向传播时STE把梯度直接传给FP32权重,让网络学会“抗量化”。其粒度方面,默认权重是per - channel,激活是per - tensor,最新研究中scale/zero - point亦可作为可学习参数进行端到端更新 [^2][^3]。 #### 应用场景 适用于精度敏感,可接受再训练的场景。当模型对精度要求较高,且有足够的训练资源(如完整训练集和GPU时间)时,QAT能够在量化的同时保证模型精度几乎无损,支持4 - bit超低比特量化 [^3]。 以下是PyTorch中QAT的示例代码: ```python import torch, torchvision, torch.quantization as tq model = torchvision.models.resnet18(pretrained=True) model.train() tq.prepare_qat(model, qconfig=tq.get_default_qat_qconfig('fbgemm')) opt = torch.optim.AdamW(model.parameters(), 1e-4) # 假设train_loader是训练数据加载器 for x, y in train_loader: loss(model(x), y).backward() opt.step() torch.jit.save(tq.convert(model.eval()), 'qat.pt') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值