A ring is composed of n (even number) circles as shown in diagram. Put natural numbers into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input:
n (0 <n <= 16)
Output:
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements.
You are to write a program that completes above process.
Sample input:
6
8
Sample output:
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
#include <math.h>
#include <stdio.h>
int N;
int result[50];
int visit[50];
int is_prime(int n)
{
int max = sqrt(n);
int i = 2;
while(i <= max)
{
if(n % i == 0)
{
return 0;
}
i++;
}
return 1;
}
void print_result(void)
{
int i = 1;
while(i <= N)
{
printf("%d ", result[i]);
i++;
}
printf("\n");
}
void search(int current_count)
{
if(current_count == N && is_prime(1 + result[current_count]))
{
print_result();
visit[result[current_count]] = 0;
return;
}
int i;
for(i = 2; i <= N; i++)
{
if(visit[i] == 0 && is_prime(i + result[current_count]) )
{
visit[i] = 1;
result[current_count + 1] = i;
search(current_count + 1);
}
}
visit[result[current_count]] = 0;
}
int main(int argc, char **argv)
{
int i = 1;
while(scanf("%d", &N) != EOF)
{
result[1] = 1;
visit[1] = 1;
printf("Case %d:\n", i);
i++;
search(1);
}
return 0;
}
这个代码可以从下面两点优化:
1. 预先把数字是否为质数保存到数组里面,而不是一个个的去计算。
2. 考虑到数字的奇偶行,下面一行可:
for(i = 2; i <= N; i++)
可以改为:
for(i = (current_count+1) %2 + 2; i <= N; i+=2)
References: