if __name__ == '__main__':
out="/home/zengxh/workspace/zdata"
summarywriter=run_tensorboard(out,port=6006) # port为0的话是生成不冲突的随机端口
# 记录模型
model = torchvision.models.shufflenet_v2_x0_5()
dummy_input = torch.randn(1, 3, 224, 224)
summarywriter.add_graph(model, (dummy_input))
# 记录训练时权重的值
epoch = 10
for name, param in model.named_parameters():
summarywriter.add_histogram(name, param.clone().data, epoch)
# 保存的是训练时候的图片
train_inputs_make_grid = torchvision.utils.make_grid(dummy_input.to("cpu"), normalize=True,scale_each=True)
summarywriter.add_image('Train Image{}'.format(epoch), train_inputs_make_grid,epoch)
line1="this is ..."
summarywriter.add_text('line1', str(line1), epoch)
lr = 0.1
for e in range(epoch):
lr = lr * 0.1
summarywriter.add_scalar("train/lr", lr, global_step=e)
summarywriter.add_scalar("train/lr2", lr, global_step=e)
summarywriter.add_scalar("val/lr2", lr, global_step=e)
summarywriter.close() # 关闭tensorboardX 日志
运行后会打印启动tensorboard的命令
或者是直接访问在浏览器中输入http://127.0.0.1:6006